Subject Index

A

Absorption current effect, 37
a-c breakdown (see also Breakdown, electrical characterization), 304–305
under constant a-c potentials, 306
model of, 304–306
under slowly rising a-c potentials, 305–306
Acetonitrile, conduction in, 241
a-c loss
test methods, 368
voltage breakdown determination, 275–276, 283
Acoustic detection devices, for breakdown phenomena, 281–282
a-c potentials
constant, 306
slowly rising, 305–306
a-c stresses, 267–268
Activation energy, 47–54
a-c Wheatstone bridge, 155, 157
Additives
flow-improving, 333
metal deactivator, 344
Aerosols, fuel, 252
Aging
effects on conduction, 230–233
oxidation-related, test methods, specifications, and values, 314–315
thermal breakdown, 271
thermal decomposition, 348–358
Aliphatic hydrocarbons, halogenated, structure and properties, 420–422
n-Alkanes, electron mobility, Arrhenius plot, 195
Alkenes, molecular structure, 384–385
Alkylbenzene, molecular structure, 28–29
Alkyl-substituted aromatic compounds, structure and properties, 419–420
Alkynes, molecular structure, 385–386
Alphabet, Greek, 435
Amphiprotic liquids, 173
Amyl oleate, structure and properties, 412
Aniline point, 324
Antioxidants
actions, 166
groups, 167
metal passivator, 345
test methods, 362
API gravity scale, defined, 400
Aprotic liquids
conductivity, 236–241
defined, 172–173
physical properties, 238
structure, 238
Aqueous solutions characterization and classification, 173
conductivity of, 233–235
electrical breakdown/prebreakdown, 250–251
used in dielectric engineering, 176
Area, units and equivalents, 431
Aromatic compounds
alkyl-substituted, structure and properties, 419–420
aromatic ring structure, 317
mineral oil content, measurement, 329
molecular structure, 386–389
Aromatic hydrocarbons
history of, 407–408
structure, 174
ASA 3, effect on breakdown, 266, 284
Askarels
molecular structure and composition, 407–409
properties and uses, 409
ASTM Committee D27 (recommended standards for electrical insulating oils), 375–379
ASTM standards
D 86, 339
D 88, 336
D 92, 339
D 93, 339
D 97, 333, 337
D 117, 312, 337–338, 362, 366
D 129, 329
D 240, 341
D 445, 336
D 446, 336
D 611, 324
D 659, 339
D 664, 362
ASTM standards—continued
D 831, 364
D 877, 367, 393
D 924, 109, 368
D 971, 368
D 974, 362
D 1169, 368
D 1218, 322
D 1250, 335
D 1275, 329
D 1298, 335, 400
D 1500, 362
D 1524, 362
D 1533, 366
D 1563, 362
D 1698, 362
D 1807, 358, 367
D 1816, 312
D 1818, 312
D 1819, 312
D 1827, 368
D 1827, 368
D 1832, 364
D 1903, 335, 399
D 2112, 360
D 2140, 29, 322
D 2144, 362
D 2159, 329
D 2161, 336
D 2162, 336
D 2224, 323
D 2285, 368
D 2298, 366
D 2300
 method a, 366
 method b, 365
D 2382, 341
D 2440, 360
D 2500, 337
D 2502, 323
D 2503, 323
D 2551, 339
D 2608, 362
D 2622, 329
D 2668, 362
D 2699, 337
D 2717, 335, 397
D 2766, 335, 397
D 2780, 365
D 2878, 323, 339
D 2887, 339
D 2945, 364
D 3120, 329
D 3228, 329
D 3238, 322
D 3300, 283
D 3339, 362
D 3431, 329
D 3455, 367
D 3487, 312, 316, 331
D 3612, 356, 362, 364
D 3635, 362
D 4055, 362
D 4059, 341
D 4310, 362
D 4768, 362
F 661–80, 366

ASTM test methods and specifications
composition, 376
contaminants, 379
cooling, 376–377
dissolved gasses, 378–379
environmental effects, 377
flammability, 377
gassing, 378
general, 375
oxidation, 378
Pressure effects on prebreakdown events, 291–293
role in electrical breakdown, 271

Atmosphere
Carbon atom, 380–381
Liquid insulating materials, 380–381
Attachment, electron, 203
Attraction, molecular, 160
Auto-ignition temperature, evaluation
methods, 339

B

Balsbaugh test cell, 110–111
2TN50 two terminal concentric electrode, 112–113
3HV35 three terminal concentric electrode, 110–111
LD-3 three terminal parallel-plane electrode, 113–114
Barrier model, of dipole orientation, 54–56
Bauer complex compensation bridge, 122–124

Benzene
composition, 408
molecular structure, 386–388, 408
polarity, 27–30
Benzene—continued
properties, 420
short range order, 160
Benzyl benzoate, structure and properties, 412
Benzyl neocaprate, structure and properties, 426–427
Berberich test cell, 108–109
Bifringence, in Kerr effect measurements, 186
Biphenyl, molecular structure and composition, 408
Bjerrum distance, 217
Boiling point, 170, 264–265
Bond angle, 390
Bond length, 389–390
Born’s formula, 161
Branch structures, characterization, 273
Breakdown, electrical (see also a-c breakdown; d-c breakdown; prebreakdown, electrical)
a-c model, 304–306
aqueous solutions, 250–251
atmosphere role, 271
breakdown voltage determination, 283
bubble/low density formation, 246–248
classification, 267–271
conductivity role in, 266
corona discharges, 281
d-c model
 basic, 296–302
 practical, 303–304
defined, 262
dielectric strength, 275
environmental effects, 269–271
historical overview, 272–273
implications, 306–307
intrinsic, defined, 271
laser-induced, 251
measurement
 breakdown voltage determination, 275–276
current determination, 276–278
electro-optical techniques, 278–281
light/acoustic techniques, 281–282
time lag to, 248–249
in nonpolar liquids, 241–249
partial discharges, 281
prevention, 307
published experimental results, 282
radiation effects, 271
role of electronic properties, 244–246
stages, 241
temperature effects, 271
thermal, 271
time lag to breakdown measurements, 248–249
water, 250–251
British (NPL) test cell, 108–109
Brookfield viscometer method, 337
Bubble formation, 246–248, 272, 354
Bush structure, characterization, 284
Butyl benzoate, structure and properties, 413
Butyl borate, structure and properties, 414
Butyl carbonate, structure and properties, 414
Butyl citrate, structure and properties, 414
Butyl laurate, structure and properties, 414
Butyl naphthenate, structure and properties, 414
Butyl oleate, structure and properties, 413
Butyl ricinolate, structure and properties, 413

C
Calcium naphthanate, contamination with, 70–71
Cameras
 image converter, 278–281
 ultra-high-speed, 278–281
Capacitance, units and equivalents, 432
Capacitance and dissipation factor bridge, computer-controlled, 120–121
Capacitors, liquids for, 425–427
Carbon
 atomic structure, 382
carbon-type determination, 325
Carbon-carbon double bonds, 384–385
Carbon-carbon triple bonds, 385–386
Carbon-hydrogen bonds, 383
Carbonyl, infrared absorption, 345–346
Castor oil, 94–98
Charge
 movement, losses due to, 164–165
transfer effect on positive charge carrier, 203
units and equivalents, 432
Charge carriers
 generation
 collisional ionization, 188
field emission, 186–187
field ionization, 186–187
high energy radiation, 179–181
injection at electrodes
electric double layers, 182–184
electro-optical measurements, 185–186
process of, 184–185, 221, 296–298
Charge carriers, generation—continued
liquid classification based on,
172–173
by microscopic particles, 187–188
photoeffect, 178–179
photoionization, 178–179
solution of ionizing compounds,
181–182
thermal excitation, 117–118
transport properties
attachment, 203
charge transfer, 203
electron mobility, 192–197
hole mobility, 203–204
injection effects on conduction, 221
ion mobility, 197–201
measurement methods, 188–192
models, 204–206
particle motion, 197–201
recombination, 201–203
Chemical bonds, 150–152
Chemical composition
effects on physical properties of
insulating oils, 318
test methods, specifications, and values, 313
Chemical transformations, conductivity,
230–233
Chlorides
contamination with, 359
inorganic, test methods, 367
Chlorinated diphenyl oxides, molecular
structure and composition, 409–410
Chromatographic techniques
gel permeation
molecular weight distribution
determination, 323–324
naphthenic oils, 319–320
for oil characterization, 322
Classifications
aqueous solutions, 173
dielectric fluids, 263
electrical breakdown, 267–271
liquids
based on charge carrier generation,
172–173, 172–173
physico-chemical, 172–173
mineral oils, 400–401
water, 173
Clausius–Mosotti equation, 11, 153–154
Clausius–Mosotti field, 8–10
Cleveland open-cup method, for flash/fire
points, 339
Cloud point
defined, 332
measurement methods, 337–338
undewaxed paraffinic transformer oils,
332
Coaxial line-waveguide methods, 130,
132–134, 157–158
Coefficient of thermal expansion
insulating oils, determination, 330, 399
test methods, 335
Cole-Cole plots, 42
Collisional ionization, charge carrier
generation by, 188
Color
oxidized oil, 347
test methods, 362
Compatibility, test methods, 367–368
Composition, test methods and
specifications, 376
Computer-controlled transformer ratio arm
bridge, 120–122
Concentric electrode 50/60 Hz oil test cell,
108
Conduction, heat transfer during, 172
Conduction, electrical
acetonitrile, 241
aging, 230–233
aqueous solutions, 233–235
chemical transformations, 230–233
electrohydrodynamic, 229–230
electronic, losses due to, 77–80
extrinsic, 207
charge injection, 221, 296–298
current decay in time, 219–221
electrolytic conduction, 214–219
fluid motion, 221
particle-induced, 221–222
space charge relaxation, 220–221
high field conductivity, 227–228
high pressure, 222–225
impurity, 208
intrinsic, 209–214
ionic
frequency effects, 59–61
losses due to, 56–77
mechanisms, schematics, 148–149
nitrobenzene, 240
nonpolar liquids, 207–233
polar liquids, 233–241
propylene carbonate, 236–240
purification of water, 235–236
radiation-induced, 225–227
regions, 207–208
streaming liquids, 229–230
thin liquid films, 222
water, 233–236
Conductivity, electrical
defined, 39
dielectric fluids, 66, 266
role in breakdown process, 266
Contaminants
in mineral oils, 407
test methods and specifications, 315, 379
values, 315
Cooling
properties of insulating mineral oils, 329–338
test methods and specifications, 313–314, 376–377
typical values, 313–314
Copper content
monitoring, 345
test methods, 362
Corona inception voltage, 281, 305
Covalent bonds, 151
in liquid insulating materials, 381–383
molecular geometry, 389–390
polar, 383–384
Critical data, table of, 170
Cryogenic fluids, characterization, 265
Crystals, electron mobility in, 204
Cumylphenylethane, structure and properties, 426–427
Current
electrode, temporal variation, 219–220
measurements, 276–278
units and equivalents, 432
Current density, 39
Cycloheptatriene cation, molecular structure, 389
Cyclohexyl ricinoleate, structure and properties, 413
Cyclopropenyl cation, molecular structure, 389

D

Damping factor \(\tau \), 102, 104
d-c breakdown (see also Breakdown, electrical basic model), 296–302
charge injection process, 296–298
constant d-c potentials, 303–304
fast event of, 302
negative streamers, 300
partial discharges, 301
positive streamers, 300–301
practical model, 303–304
primary/secondary streamer growth, 300
slowly rising d-c potentials, 303
streamer development, 298–300
d-c potentials

constant, 303–304
slowly rising, 303
d-c stresses, 267–268
Debye-Hückel atmospheres, 58
Debye model, of macroscopic viscosity, 44
Debye screening length, 184
Decomposition processes
gas absorbing/evolving behavior, 356–358
gas formation, 348–356
Delocalized state, electron transport in, 204–205
Density
defined, 335
dielectric fluids, 264–265
insulating oils, determination, 330
test methods, 335–336
units and equivalents, 431
Dibutyl silicate, structure and properties, 415
Dielectric constant (see Permittivity)
Dielectric fluids
applications, 251–254
chemical characteristics, 265–266
classification, 263
defined, 262–263
electrical breakdown (see Breakdown/prebreakdown, electrical)
electrical properties, 266
physical properties, 264–265
physico-chemical characteristics, 263–264
under a-c conditions, 64–78
and breakdown, 358–359
breakdown voltage, 275–276, 283, 367
dipolar relaxation, 165–167
electronic conduction-related, 77–80
frequency effects, 40, 85–87
induced dipoles, 167
interfacial relaxation, 168
ionic conduction-related, 56–77
loss factor, 37
measurement, 42, 106–108
high frequencies, 126–140
intermediate frequencies, 120–123
low frequency, 115–120
lumped and distributed parameter techniques, 106–108
lumped-parameter-specimen test cells, 108–115
upper and high radio frequency range, 123–126
mobile charge carrier effects, 56
molecular theories, 43–56
movement of charges, 164–165
Dielectric loss—continued
 space charge polarization and relaxation, 168
 temperature effects, 87–89
Dielectric strength of a material, 275, 358
Dielectrophoretic processes, 253–254
Diethyl hexyl adipate, structure and properties, 414
Diethyl hexyl phthalate, structure and properties, 415
Diethyl hexyl sebacate, structure and properties, 415
Diffusion coefficient, 172
Dilution, Ostwald’s law of, 234
Dimethylsiloxane silicone fluids, 98–101
Diocylphthalate, structure and properties, 426–427
Dipolar relaxation, losses due to, 165–167
Dipole-dipole interactions, 159
 characterization, 390–391
 hydrogen bonds, 391–392
Dipole moment
 Debye equation, 9–10
 defined, 384
 examples of, 155
 induced, 6
 Kirkwood equation, 18–20
 Onsager equation, 13–18
 permanent, 6–8, 153
 and permittivity, 23–25
 in silicone fluids, 32
 specific, 7
 units and equivalents, 431
 zero, 152
Dipole orientation
 activation energy for, 50–54
 barrier type model, 54–56
 quantum mechanical correction (Van Vleck), 13
Dipole rotation, hindered, 19–20
Discharges
 in d-c breakdown, 301–302
 effects on breakdown, 281, 293–295, 305
Dispersion interaction, 159
Dispersive Fourier transform spectrometry, 140
Disposal, of insulating oils, 339
Dissipation factor
 characterization, 396
 defined, 37
 in Hartshorn-Ward circuit, 124–125
 in reentrant cavity measurement system, 128–129
Dissolved-gas content
 IEC and IEEE codes for, 349
 specifications, 378–379
 test methods, 362–364, 378–379
Distribution function
 radial, 4
 relaxation times, 80–85
Ditolylether, structure and properties, 426–427
Double bonds, carbon-carbon, 384–385
Double layer, electric, 182–184, 229–230
Duval’s triangle, 350
Dye lasers, 178

E

Electrical breakdown, electrical (see Breakdown/prebreakdown)
Electrical conduction (see Conduction, electrical)
Electrical conductivity (see Conductivity, electrical)
Electrical decomposition, 348–358
Electric double layer
 characterization and schematics, 182–184
 at metal/insulating liquid interface, 229–230
Electric field, effects on electron mobility, 197
Electric strength, of insulating liquids, 393
Electric stress, units and equivalents, 433
Electrodes, geometries
 commonly used, 270
 role in breakdown, 269
Electrodialysis, 237–239
Electrohydrodynamic conduction, in nonpolar liquids, 229–230
Electrohydrodynamic mobility, 201
Electrokinetic potential, 201
Electrolytes, charge carrier generation by, 181–182
Electrolytic conduction, in nonpolar liquids, 214–219
Electronegativity, 383
Electronic conduction, losses due to, 77–80
Electronic polarization, relaxation times, 164
Electronic properties
 energy levels in dielectric liquids, 161–162
 liquids, 161–163
Electron mobility
 in n-alkanes, Arrhenius plot, 195
 in condensed matter, 272
 electric field effects, 197
high pressure effects, 197
magnetic field effects, 197
in nonpolar liquids, 194
in polar liquids, 198
structure effects, 193
temperature effects, 193

Electrons
high energy
 ionization and excitation events produced by, 179–180
 reactions in dielectric liquids, 179–180
orbitals, 380–381
transport models, 204–206

Electro-optical devices
for breakdown testing, 278–281
development, 273

Electrophoresis, 200
Electrostatic HV machines, 252
Electroviscuous effects, 171

Energy
loss, expression for, 37–38
units and equivalents, 432

Environmental effects
on electrical breakdown, 269–271
standard test methods and specifications, 377

Equivalent circuits
lossy capacitor test cell, 155–156
parallel, 38–39
transient response test circuit, 116–117

Equivalent conductivity, ionic, 200

Esters
aliphatic, 410
aromatic, 411
characterization, 265
complex, 411
organic
 characteristics, table, 412–415
 characterization and synthesis, 175
 molecular structure and composition, 410–411
phosphate, 416

Excitation events, high energy radiation-related, 179–181

F

Fast event, in d-c breakdown, 302
Field emission, charge carrier generation by, 186–187
Field ionization, charge carrier generation by, 186–187
Fire point
 defined, 338

dissolved-gas analysis
 IEC and IEEE codes for, 349
 test methods and specifications, 362–364, 378–379
formation, 348–356
solubility in oil versus temperature, 355

Flammability
 insulating liquids, 399–400
 insulating mineral oils, 338–339
 specifications, 377
 test methods, 339–341, 377

Flash point
 defined, 338
 minimum accepted value, 338
 polyolefins and silicones, 400
 test methods, 339

Flow properties
 insulating liquids, 396–399
 insulating oils, 330–335

Fluorocarbons, physical and electrical properties, 422

Force, units and equivalents, 431

Fourier transformation procedures
 Fourier transform spectrometry
 dispersive, 140
 oil characterization with, 322
 pulse response measurements, 117–118
 Free wave methods, 137–140
 Freons, characterization, 265

Frequency
effects
 on dielectric losses, 85–87
 on energy loss, 40
 on ionic conduction, 59–61
 microwave, and loss, 167
 and polarization, 24–25

Frequency response
defined, 85
 insulating liquids, 85–101
 Fröhlich equation, 21–22

Fuel aerosols, generation, 252

Furan, molecular structure, 389–390

Furanic compounds, in insulating oil, 354
Furfural content, test methods, 366

G

Gamma rays, conductivity induced by, 225–227

Gas
 absorbing/evolving behavior, 356–358
 absorption by insulating liquids, 396
 dissolved-gas analysis
 IEC and IEEE codes for, 349
 test methods and specifications, 362–364, 378–379
formation, 348–356
 solubility in oil versus temperature, 355
Gassing
- specifications, 378
- test methods, 365–366, 378

Gel permeation chromatography
- molecular weight distribution
determination, 323–324
- naphthenic oils, 319–320

Geminate recombination, 179

Geometry, of covalent molecules, 389–390

Gouy–Chapman layer, 183, 185

Gouy–Chapman theory, 184

Greek alphabet, 435

H

Half-life, of ion pairs, 202

Halogenated hydrocarbons, aliphatic,
- structure and properties, 420–422

Handling, of insulating oils, 339

Hartshorn–Ward test cells, 113–116
- modified susceptance variation circuit,
 123–126
- reentrant cylindrical cavity measurement
technique, 126–128

Heat of combustion, test methods, 341

Heat of evaporation, 169–170

Heat properties (see Thermal properties)

Heat transfer, properties of insulating
mineral oils, 329–330

Helium, liquid, 175–176

Helmholtz layer, 184, 200–201

Heterocyclic molecules, characterization, 265

High field conductivity, of nonpolar
liquids, 227–228

High pressure
- conductivity, 222–225
- effects on electron mobility, 197

High voltage
- apparatuses, applications of dielectric
 liquids, 251–254
- generation, 252

Hole mobility
- characterization, 203–204
- as function of temperature, 204

Hopping transport, electrons in nonpolar
liquids, 205

Hückel rule, 388

Hund’s rule, 382

Hückel, Erich, 388

Hydrocarbons
- aromatic
 - history, 407–408
 - structure, 174
 - classes, 312, 316
- liquids, electrical dispersion, 252–253
- molecules in oil, structure, 317
- sulfur-containing, 342–344
- synthetic
 - structural formula, 176
 - structure and properties, 417–425

Hydrogen bonds, 159–160, 382

I

IEC codes for dissolved-gas analysis, 349

IEC publications
- 74, 360
- 156, 393
- 296, 331
- 296–1982, 312
- 567, 362–363
- 588, 367

IEC-type test cell, 109–110

IEEE codes for dissolved-gas analysis, 349

IEEE Guide 64 (1977), 316

Image converter cameras, 278–281

Impulse strength, 393

Impurities, role in breakdown, 284, 291

Impurity conduction, 208

Index of refraction, variation with
frequency, 103–106

Induced dipoles, losses due to, 167

Infrared spectrometry, oil characterization
with, 322

Infrared spectroscopy
- mineral oils, 30–31
- silicone fluids, 33

Injection, charge carriers, 221

In-service oxidation resistance, 341–348

Interaction potential, Lennard–Jones, 160

Interfacial relaxation, loss due to, 168

Interfacial tension, 345
- acceptable limits, 346
- test methods, 368

Interferometry, Michelson optical type,
 137–138

Intermolecular forces, 390–392

Ion exchange, water purification by,
 235–237

Ionic conduction
- frequency effects, 59–61
- losses due to, 56–77

Ionic mobility
- expression for, 60
- ionic losses due to, 62–63
- jump model, 64–65, 172

Ionic polarizability, 6

Ionization
- collisional, 188
events, high energy radiation-related, 179–181
field, charge carrier generation by, 186–187
Ionization energy, nonpolar liquids, 161–162
Ionizing compounds, charge carrier generation by, 181–182
Ion mobility
 equivalent conductivity, 200
 in nonpolar liquids, 198
 in polar liquids, 198–200
Iso-amyl benzoate, structure and properties, 412
Iso-propyl benzoate, structure and properties, 412
Isopropylbiphenyl, structure and properties, 425–426
Isothermal compressibility
 expression for, 169
 values for, 170

K

Kerr effect measurements, 185
Kirchoff’s edge correction formula, 127
Kirkwood equation, 18–20

L

Langevin function, for orientation polarizability, 7
Lasers, dye, 178
Laser triggered switching, 251
Length, units and equivalents, 431
Lennard–Jones potential of interaction, 160
Light emission, breakdown-related, 281–282
Loss factor
 defined, 37
 as function of frequency, 167
Loss index (see Loss factor)

M

Macroscopic viscosity, Debye model, 44
Magnetic field, effects on electron mobility, 197
Mass, units and equivalents, 431
Mass spectrometry
 characterization of insulating mineral oils, 321
 naphthenic and paraffinic oils, 321
Maxwell–Wagner polarization, loss due to, 168
Mechanical tension, expression for, 169
Melting point, of dielectric fluids, 264–265
Metals, contamination with, 358–359
Methylated diphenylethane, structure and properties, 425, 427
Methyl benzoate, structure and properties, 413
Methyl stearate, structure and properties, 413
Micelles, as charge carriers, 201–202
Michelson optical type interferometer, 137–139
Mineral oils
 aromatic
 benzene rings, 27–29
 and dipole loss, 89–91
 characterization, 320
 chemical composition, 312–329
 classification, 400–401
 composition, 400–407
 contaminants, 407
 contamination, 70
 cooling properties, 329–338
 with differing aromatics, behavior, 67–68
dipole loss
 frequency effects, 85–87
 oxidation effects, 91–94
 temperature effects, 87–89
flammability, 338–339
handling and disposal, 339
insulation-related properties, 341–368
molar polarization vs. reciprocal absolute temperature, 35
molecular structure, 30–31, 400–407
oxidation reaction, 58
polarity, 34–35
production technology, 318–319
properties, 28
used in dielectric engineering, 406
Mobility
 electrohydrodynamic, 201
electron, 192–197
 in n-alkanes, Arrhenius plot, 195
 in nonpolar liquids, 194
 structure effects, 193
temperature effects, 193
ionic
 ionic losses due to, 62–63
 jump model, 64–65, 172
Molar polarization, 10–13
 atomic, 103
Molar polarization—continued
 complex, under a-c conditions, 44
 defined, 10
 electronic, 103
 gases, 11
 liquids, 11–12
 total, Onsager equation, 18
Molecular orbitals, in pi and sigma bonds, 152
Molecular size distribution, naphthenic oils, 319–320
Molecular structure, insulating mineral oils, 319–322, 400–407
Molecular weight distribution,
 determination, 319, 323–324
Mono/dibenzyltoluene, structure and properties, 426, 428
Multi-Amp dielectric liquid test cell, 109–110
Multiframe cameras, for breakdown testing, 278–281

N

Naphthalene, molecular structure, 389
Naphthenic molecules
 naphthenic ring structure, 317
 polarity, 30
 structure, 174
Naphthenic oils
 mass spectrometric characterization, 321
 molecular size distribution, 319–320
Neutralization number, 345
 acceptable limits, 346
 test methods, 361
Newtonian liquids, 331, 336, 397
Nitrobenzene, conduction in, 240
Nitrogen
 contents determination, 329
 liquid, 175–176
Nitromethane, dielectric constant, temperature effects, 26–27
Nonpolar liquids
 defined, 152
 electron mobility, 194
 ionization energies, 161–162
 ion mobility in, 198
 photoconductivity measurement, 178
NPL test cell
 characterization, 108–109
 modified two-terminal, 110, 112
Nuclear magnetic resonance spectrometry,
 oil characterization with, 322
Nyquist frequency, defined, 118

O

Olefins
 molecular structure, 384–385
 structure and properties of polyalpha-olefins, 418–419
Onsager equation, 13–18, 34
Optical methods, 137–140
 quasi-optical methods, 137
Orbitals
 antibonding, 381–382
 electron, 380–381
Order, short range molecular, 160
Organic esters
 characterization and synthesis, 175
 structure and properties, 410–415
Orientation, dipole, quantum mechanical correction (Van Vleck), 13
Orientation polarizability, 6–7
Orientation polarization, relaxation time, 164
Ostwald’s law of dilution, 234
Oxidation
 effect on dipole loss, 91–94
 mineral oils, 58, 406–407
 resistance, 342–348
 resistance test methods, 360–361
 test methods and specifications, 314–315, 378
 values, 314–315
Oxidation inhibitors, 342, 406–407
Oxygen, role in breakdown, 284, 291

P

Paint, spraying, 252
Paraffinic oils
 mass spectrometric characterization, 321
 soaking effect, 334
Paraffin molecule
 polarity, 25–27
 short range order, 160
 structure, 174, 317
Partial discharges
 in d-c breakdown, 301–302
 effects on breakdown, 281, 293–295, 305
Particles
 in commercial liquids, charge carrier generation by, 187–188
 conduction induced by, 221
 contamination, 358
 content, test methods, 366–367
 electrophoresis, 200–201
Pellat–Debye equations, 42–43, 64
Pentachlor diphenyl, dielectric behavior, 35–36
Perfluorocarbons
 characterization, 265
 synthesis, 174
 used in dielectric engineering, 173–175
Permanent dipole moment (see Dipole moment, permanent)
Permittivity, 152–159
 aromatic oils, 27–28
 characterization, 394–396
 Clausius–Mosotti field, 8–9
Debye equation, 9–10
 defined, 5
 examples, 155
Fröhlich equation, 21–22
Kirkwood equation, 18–20
 low frequency value, 5
measurement, 106–108
 high frequencies, 126–140
 intermediate frequencies, 120–123
 low frequency, 115–120
lumped and distributed parameter techniques, 106–108
lumped-parameter-specimen test cells, 108–115
 upper and high radio frequency range, 123–126
mineral oil, typical, 407
 models, difficulties with, 23
 molar polarization, 10–13
 and molecular structure, 23–36
Onsager equation, 13–18
 and permanent dipole moment values, 23–25
 and polarizability, 6–8
 relative, and polarization, 153–154
 static value, 5
Peroxide content, 345
Peroxide number, test methods, 361
Phenylmethyl dichlorosilane, derivation, 424–425
Phenylxylylethanes, structure and properties, 425, 427
Phosphate esters, structure and properties, 425, 427
Polyalpha-olefins, structure and properties, 418–419
Polybutenes
 structure and properties, 417–418
 synthesis, 417
Polychlorinated biphenyls
 contamination, test method, 341
 dielectric behavior, 35–36
 handling and disposal, 339
 substitute liquids, 94–95
Polydimethylsiloxane
 atomic and electronic polarization, 32–33
 characterization, 424
 component dipole moment, 32
 physical and electrical properties, 423
Polymerization, conduction effects, 230–231
Polyolefins, flammability, 400
Polyphenylmethyl siloxane, 424
P orbitals, 380–381
Pour point
Pour point—continued
determination, 331
measurement methods, 337
paraffinic oils, 333–335
Power, units and equivalents, 432
Power generators, types, 267–268
Prebreakdown, electrical
 bush concept, 284
effects, of partial discharges, 293–295
 laser-induced, 251
 and molecular composition of fluids, 291
 pressure effects, 291–293
 role of impurities, 284, 291
 streamers
 concept of, 284
growth effects, 291–293
tree concept, 284
Pressure
high
 conductivity, 222–225
effects on electron mobility, 197
 role in electrical breakdown, 271
units and equivalents, 432
Propylbiphenyl, structure and properties, 425–426
Propylene carbonate
 characterization and synthesis, 176–177
 conduction in, 236–240
 conductivity, electron injection-related, 184
Protogenic liquids, 173
Protophilic liquids, 173
Pseudoplastic fluids, 332
Pulse generators
 trapezoidal, 268
types of, 268
Pulse response methods, 117
Purification, water, 235–237
Pyrrole, molecular structure, 389–390

Q

Quality factor
 defined, 106
 resonant cavity, 135–136
Quantum mechanics, correction to dipole
orientation (Van Vleck), 13
Quantum number, 150

R

Radial distribution function, 4
Radiation
 conductivity induced by, 225–227
 high energy, ionization and excitation
 events produced by, 179–181
 role in electrical breakdown, 271
Rayleigh limit, 252
RC-type bridge measuring techniques, 120–123
Reclamation, limits to, 346–347
Recombination
 charge carriers, 201–203
 rate constant, 202
 recombination coefficient, 202
Reentrant cylindrical cavity measurement
 technique, 126–128
Refractive index
 defined, 322
test methods, 322–323
Relaxation, 40
 defined, 163
dipolar, 165–167
distribution, 80–85
 intrinsic, 44–45
 space charge, 220–221
temperature effects, 46–54
Repulsion, molecular, 160
Resistance, units and equivalents, 432
Resistivity
 insulating liquids, 393–394
test methods, 368
Resonance absorption, 102–106
Resonant cavities
 H_{01} mode, 134–135
 variations, 134
Reststrahlen technique, 104
Reverse osmosis, water purification by, 235–237
Richardson equation, 209–211
Roberts–von Hippel technique, 130–131

S

Safety, test methods, specifications, and
 values, 314
Scheiber bridge, 118
Schering bridge, 118, 120
Schlieren photography, 230, 278–281
Schottky effect, 210
Sellmeier equation, 104
Short range molecular order, 160
Sigma bonds, 151, 384
Silicone
 structure and properties, 422–425
 synthesis chemistry, 422–424
Silicone fluids
 dimethylsiloxane, 98–101
 flammability, 400
INDEXES 461

molar polarization versus reciprocal absolute temperature, 35
molecular structure, 31–32
oils
characterization and synthesis, 175
siloxanes, 265
polarity, 34–35
properties, 28
Siloxanes, characterization, 265
SI units
dynamic viscosity, 336
kinematic viscosity, 336
prefixes for, 436
Sludge content, 346–347
test methods, 361–362
Solubility coefficients, determination, 365
Solvation number, 199
S orbitals, 380–381
Space charge polarization
loss due to, 168
relaxation time, 164
Space charge relaxation, 220–221
Specific gravity, defined, 4041
Specific heat
defined, 171, 398
determination, 397–398
insulating oils, determination, 330
test methods, 335
values for, 171
Spectrometry
Fourier transform (see Fourier transformation procedures)
time domain techniques, 136–137
Spectrum analyzers, for electrical breakdown measurements, 282
Spraying, of paint, 252
Square pulse technique, 117
Step pulse technique, 117
Stern layer, 184
Stoke's law, 60, 198
Streamers
characterization, 273
concept of, 284
development, 298–300
growth
primary, 300
secondary, 300
growth in hydrocarbons, 286–289
negative, 273, 300
positive, 300–301
Streaming liquids, conductivity, 229–230
Stress, electrical
role in breakdown, 267–268
types of, 267–268
Stress resistance, test methods,
specifications, and values, 315
Sulfates
contamination with, 359
inorganic, test methods, 367
Sulfur contents, determination, 329
Supersaturation phenomena, 354
Surface energy
defined, 170
values for, 171
Susceptance variation methods, 123–126
Switching, laser triggered, 251
Synthetic hydrocarbons (see also specific hydrocarbon)
structure and properties, 417–425

T

Temperature
and activation energy, 47–54
effects
on dielectric losses, 87–89
on electron mobility, 193
on ionic conduction, 56–59
on nitromethane dielectric constant, 26–27
on relaxation time, 46–54
role in electrical breakdown, 271
Temporal variations, electrode current in nonpolar liquids, 219–220
Tetra-hydrofurfuryl oleate, structure and properties, 412
Tetrahydro furfuryl oxalate, structure and properties, 415
Thermal breakdown, defined, 271
Thermal conductivity, 171–172
characterization, 397
of dielectric fluids, 264–265
expression for, 397
insulating oils, determination, 330
liquids at 20°C, 172
test methods, 335
Thermal decomposition, 348–358
Thermal excitation, charge carrier generation by, 117–118
Thermal expansion
expression for, 169
values for, 170
Thermal properties, insulating liquids, 396–399
Thermo-physical properties, liquids, 169–172
Thin liquid films, conductivity, 222–223
Thiophene, molecular structure, 389
Thompson–Harris bridge, 118
Time domain spectrometric techniques, 136–137
Toxicity, test methods, specifications, and values, 314
Transformer ratio arm bridge, 120
microcomputer-controlled, 120–122
Transient response method, for steady state responses, 116–117
Translational polarizability, 9–10
Transmission line methods, 129–131
Trapezoidal pulse generators, 268
Trap modulated transport, electrons in nonpolar liquids, 205
Tree structures, characterization, 273, 284
Tri-cresyl phosphate, structure and properties, 413
n-Tridecane, photoconductivity, 179
Triphene, molecular structure, 390
Triple bonds, carbon-carbon, 385–386
Tri-xylenyl phosphate, structure and properties, 413

van der Waals forces, 159, 392
Vince low frequency bridge, 118–120
Viscometers, 336–337
Viscosity
absolute, units and equivalents, 432
defined, 171, 397
dielectric fluids, 264–265
dynamic, 330–331
defined, 336
insulating oils, 51, 330–335
kinematic
characterization, 397
units and equivalents, 432
macroscopic
correction for, 47
Debye model, 44
mutual, 47
role in breakdown, 291
test methods, 336–337
values for, 171
Volatile content, test methods, 339–341
Voltage
breakdown, determination, 275–276,
283, 267
units and equivalents, 433
Volume, units and equivalents, 431

W
Wagner earth connection, 118
Walden's rule, 57, 198
Walther equation, 331
Water
characterization and classification, 173
conductivity of, 233–235
contamination, 358
ccontent, test methods, 366
dielectric properties, 155
electrical breakdown/prebreakdown, 250–251
impurity effects in nonpolar liquids, 218–219
purification, 235–237
role in breakdown, 284, 291
used in dielectric engineering, 176
Wax
formation, 319, 332–333
X-wax content test methods, 366
Wein effect, 67
Wheatstone bridge, 155, 157
Wien effect, 65

X
X rays, conductivity induced by, 225–227

Z
Zeta potential, 201