Index

A

5–30 rule, 60
ABS system, see Antilocking braking systems
Acceleration, inter-unit conversions, 48
Acceleration models, 34–42
barrier test crash, 34, 38
crash pulse model
defining and testing, 35–37, 40
evaluating against example, 37–39, 41
Adaptive feedback controlled deployments, air bag systems, 54
Air bag ECU, xi-xiii
in-vehicle interrogation, 61, 68
laboratory download, xiii-xiv
parameters, 155
Air bag sensor, 50–51
Air bag system, 3, 6-7, 49-71
common components, 50
deployment decision matrix
generation 3+ systems, 125
deployment timeline, 60, 63
determining air bag deployment timing, 83–85, 87–89
diagnosis using scanner, 7
distributed sensor switches, 50–54
intermediate generation, 53, 55
lamp blink code diagnostics, 53–54
malfunction indicator lamp, 53
modulated inflation, 125
modules, 59–60, 62
performance, 49–50
scanners, 61, 63–66
second generation, 53–54, 57
sensors, 54, 56–61
smart third generation, 124
third generation, 54
AirCraft data recorders, xi-xii
versus automotive, 151–154
Anthropomorphic Test Device, 44
Antilock braking systems, 72, 74
freeze frame data, 97, 99
Antilock braking/traction control systems, 74–76
common components, 75, 77
ECUs, 77
format and scaling of freeze frame data, 77–79
pumps, valves, accumulators, and motors, 77
wheel sensors, 77
Antilocking braking ECU, xi-xiii
individual wheel speed sensor feedback, 3.5
parameters, 155
Arming sensor, 51
determining closure timing, 84, 88

B

Barrier approach velocity, 37
Barrier equivalent velocity, 43–44
Barrier test-crash, 34, 38

C

Code of Federal Regulations, 148
Collision avoidance sensing, 125
Collision pulses, 42–43
Controller area network, 8, 13
with diagnostic scanner attached, 10, 16
ISO specification, 8, 14
OBD-II, 10-11, 14, 17-19
protocol layers, ISO OSI vs. SAE J1850, 8, 15
Crash data
case-specific analysis, 91-122
crash pulses, 36
SRS system, 85
Diagnostic trouble codes, 1
Discriminating sensors, 51
electromechanical, 54, 56, 58–59
solid-state, 56, 59–61
Distributed sensor switches
air bag system, 50–54
determining air bag deployment timing, 83–85, 87–89
with intra-ECU transistor fire control, 53, 55
DTC assignments, 14, 20
breakdown of, 14, 21
crash time line and potential event-triggered DTCs, 92
data useful in crash investigations, 14, 29
deriving from raw hex data, 64–65
format and scaling of freeze frame data, ABS/TCS, 77–79
numbering systems, 45
retrieving, 60-61, 63–71
storage, 3

E

ECU, 1
affect by crash and fire damage, obtaining data, 80, 82–84
antilock braking/traction control systems, 77
architecture, 3, 8–10
composite tutorial architecture, 8–9
data in EEPROM or flash memory, 80–82, 85
electronic data, see Crash data
future, 123
inter-ECU communication, 8, 12
multiple system, 8, 10–16
EEPROM, 1, 80–81
pre-crash data, 61, 69
retrieving, 60–61, 63–71
sensitivity analysis and sensor tolerances effect on first pass timing calculation, 89–90
Crash data retrieval system, 61, 63–66
Crash pulse data, 91–94
Crash pulse model, defining and testing, 35–37, 40
Crash sensors, 51
Cruise control system, 3–4
Cryptoanalysis, 82

Copyright 2001 by ASTM International
www.astm.org