The book editor, John E. Bringas, P.Eng., is president and founder of Codes and Standards Training Institute (CASTI), headquartered in Edmonton, Alberta, Canada. A metallurgical and materials engineer, he is an engineering codes and standards information specialist with over 40 years of experience. He understands the needs of the users of this handbook because he is one himself. Mr. Bringas also authored the ASTM Handbook of Steel Data: American and European and is the principle developer of the ASTM Passport to Steel Online Database. Mr. Bringas has been teaching codes and standards related courses worldwide through CASTI (www.casti.ca) since 1989. Mr. Bringas has been a codes and standards committee member since 1982 and currently serves on:

- ASTM Steels (Chair of Steel Terminology), Coated Steels, Nonferrous Alloys (Chair of Nonferrous Terminology), Metallography, Mechanical Testing;
- ISO TC224/SC4 Steels, Canadian delegate; and

Mr. Bringas is also a long-time member of the American Welding Society (AWS), ASME International, and ASM International.
Table of Contents

Preface 1
Acknowledgments 3
Getting Started with This Book 5
1. Introduction to Comparing World Steel Standards 7
 Myth and Methodology When Comparing Steel Standards 8
 Comparative and Closest Match 8
 Organization 10
 Definitions of Steel Terms 10
 Cautionary Note 12
 Questions Regarding the Rules of Comparison 12
 Noncomparable Steels 12
 Criteria for Comparing Steels 12
 List of Comparison Rules 13
 Brief Introduction to Steel Standards and Designation Systems 14
 ASTM Designation System 14
 ASTM Referenced Standards and Supplementary Requirements 15
 SAE Designation System and Related AISI Designation System 15
 UNS Designation System 16
 Canadian Standards Association (CSA) 16
 Introduction to European (EN) Standard Steel Designation System 16
 EN 10027 Standard Designation System for Steels 17
 Steel Names 17
 Numerical System 17
 Former National Standards Superseded by CEN Standards 17
 Indexes in this Handbook 17
2. Carbon and Alloy Steels for General Use 19
 2.1 Chemical Composition of Carbon Steels for General Use 21
 2.2 Chemical Composition of High Manganese Carbon Steels for General Use 34
 2.3 Chemical Composition of Alloy Steels for General Use 36
Contents

3. Structural Steel Plates

3.1 Carbon Steels for Structural Steel Plates
 3.1A Mechanical Properties of Carbon Steels for Structural Steel Plates 51
 3.1B Chemical Composition of Carbon Steels for Structural Steel Plates 66

3.2 Alloy Steels for Structural Steel Plates
 3.2.1A Mechanical Properties of High-Strength Low-Alloy Structural Steel Plates 74
 3.2.1B Chemical Composition of High-Strength Low-Alloy Structural Steel Plates 80
 3.2.2A Mechanical Properties of Alloy Steels for Structural Steel Plates 85
 3.2.2B Chemical Composition of Alloy Steels for Structural Steel Plates 92

3.3 Structural Steels with Improved Atmospheric Corrosion Resistance
 3.3A Mechanical Properties of Structural Steels with Improved Atmospheric Corrosion Resistance 97
 3.3B Chemical Composition of Structural Steels with Improved Atmospheric Corrosion Resistance 103

4. Pressure Vessel Steel Plates

4.1 Carbon Steels for Pressure Vessel Plates
 4.1A Mechanical Properties of Carbon Steels for Pressure Vessel Plates 112
 4.1B Chemical Composition of Carbon Steels for Pressure Vessel Plates 120

4.2 Carbon Steels for Pressure Vessel Plates--With Impact Testing Below-20°C
 4.2A Mechanical Properties of Carbon Steels for Pressure Vessel Plates - With Impact Testing Below-20°C 128
 4.2B Chemical Composition of Carbon Steels for Pressure Vessel Plates - With Impact Testing Below-20°C 131

4.3 ½Mo Alloy Steels for Pressure Vessel Plates
 4.3A Chemical Composition of ½Mo Alloy Steels for Pressure Vessel Plates 134
 4.3B Mechanical Properties of ½Mo Alloy Steels for Pressure Vessel Plates 138

4.4 Cr-Mo Alloy Steels for Pressure Vessel Plates
 4.4.1A Chemical Composition of ¾Cr-½Mo Alloy Steels for Pressure Vessel Plates 140
 4.4.1B Mechanical Properties of ¾Cr-½Mo Alloy Steels for Pressure Vessel Plates 140
 4.4.2A Chemical Composition of 1Cr-½Mo Alloy Steels for Pressure Vessel Plates 141
 4.4.2B Mechanical Properties of 1Cr-½Mo Alloy Steels for Pressure Vessel Plates 141
 4.4.3A Chemical Composition of 1½Cr-½Mo Alloy Steels for Pressure Vessel Plates 142
 4.4.3B Mechanical Properties of 1½Cr-½Mo Alloy Steels for Pressure Vessel Plates 142
 4.4.4A Chemical Composition of 2½Cr-1Mo Alloy Steels for Pressure Vessel Plates 143
Contents

4.4.4B Mechanical Properties of 2½Cr-1Mo Alloy Steels for Pressure Vessel Plates 143
4.4.5A Chemical Composition of 3Cr-1Mo Alloy Steels for Pressure Vessel Plates 144
4.4.5B Mechanical Properties of 3Cr-1Mo Alloy Steels for Pressure Vessel Plates 144
4.4.6A Chemical Composition of 5Cr-½Mo Alloy Steels for Pressure Vessel Plates 145
4.4.6B Mechanical Properties of 5Cr-½Mo Alloy Steels for Pressure Vessel Plates 145
4.4.7A Chemical Composition of 9Cr-1Mo Alloy Steels for Pressure Vessel Plates 146
4.4.7B Mechanical Properties of 9Cr-1Mo Alloy Steels for Pressure Vessel Plates 146
4.5 Ni Alloy Steels for Pressure Vessel Plates 147
4.5.1A Chemical Composition of ½Ni Alloy Steels for Pressure Vessel Plates 147
4.5.1B Mechanical Properties of ½Ni Alloy Steels for Pressure Vessel Plates 147
4.5.2A Chemical Composition of 1½Ni Alloy Steels for Pressure Vessel Plates 148
4.5.2B Mechanical Properties of 1½Ni Alloy Steels for Pressure Vessel Plates 148
4.5.3A Chemical Composition of 2½Ni Alloy Steels for Pressure Vessel Plates 149
4.5.3B Mechanical Properties of 2½Ni Alloy Steels for Pressure Vessel Plates 150
4.5.4A Chemical Composition of 3½Ni Alloy Steels for Pressure Vessel Plates 151
4.5.4B Mechanical Properties of 3½Ni Alloy Steels for Pressure Vessel Plates 152
4.5.5A Chemical Composition of 5Ni Alloy Steels for Pressure Vessel Plates 153
4.5.5B Mechanical Properties of 5Ni Alloy Steels for Pressure Vessel Plates 153
4.5.6A Chemical Composition of 9Ni Alloy Steels for Pressure Vessel Plates 153
4.5.6B Mechanical Properties of 9Ni Alloy Steels for Pressure Vessel Plates 154
4.6 Ni-Mo Alloy Steels for Pressure Vessel Plates 155
4.6.1A Chemical Composition of ½Ni-½Mo Alloy Steels for Pressure Vessel Plates 155
4.6.1B Mechanical Properties of ½Ni-½Mo Alloy Steels for Pressure Vessel Plates 156
4.6.2A Chemical Composition of ½Ni-½Mo Alloy Steels for Pressure Vessel Plates 157
4.6.2B Mechanical Properties of ½Ni-½Mo Alloy Steels for Pressure Vessel Plates 158
4.7 Ferritic and Martensitic Stainless Steels for Pressure Vessel Plates 159
4.7A Chemical Composition of Ferritic and Martensitic Stainless Steels for Pressure Vessel Plates 159
4.7B Mechanical Properties of Ferritic and Martensitic Stainless Steels for Pressure Vessel Plates 162
4.8 Austenitic Stainless Steels for Pressure Vessel Plates 165
4.8A Chemical Composition of Austenitic Stainless Steels for Pressure Vessel Plates 165
4.8B Mechanical Properties of Austenitic Stainless Steels for Pressure Vessel Plates 171
4.9 Duplex (Ferritic-Austenitic) Stainless Steels for Pressure Vessel Plates 185
4.9A Chemical Composition of Duplex (Ferritic-Austenitic) Stainless Steels for Pressure Vessel Plates 185
4.9B Mechanical Properties of Duplex (Ferritic-Austenitic) Stainless Steels for Pressure Vessel Plates 186
5. Steel Tubes and Pipes 189
5.1 Carbon Steel Tubes for General and Structural Applications 198
5.1A Mechanical Properties of Carbon Steel Tubes for General and Structural Applications 198
5.1B Chemical Composition of Carbon Steel Tubes for General and Structural Applications 213

5.2 Alloy Steel Tubes for General and Structural Applications 224
5.2A Chemical Composition of Alloy Steel Tubes for General and Structural Applications 224
5.2B Mechanical Properties of Alloy Steel Tubes for General and Structural Applications 225

5.3 Stainless Steel Tubes for General and Structural Applications 227
5.3.1A Chemical Composition of Ferritic and Martensitic Stainless Steel Tubes for General and Structural Applications 227
5.3.1B Mechanical Properties of Ferritic and Martensitic Stainless Steel Tubes for General and Structural Applications 228
5.3.2A Chemical Composition of Austenitic Stainless Steel Tubes for General and Structural Applications 232
5.3.2B Mechanical Properties of Austenitic Stainless Steel Tubes for General and Structural Applications 235
5.3.3A Chemical Composition of Duplex Stainless Steel Tubes and Pipes for General and Structural Applications 243
5.3.3B Mechanical Properties of Duplex Stainless Steel Tubes and Pipes for General and Structural Applications 244

5.4 Carbon Steel Tubes and Pipes for Low-Temperature Service 246
5.4A Mechanical Properties of Carbon Steel Tubes and Pipes—With Impact Testing Below-20°C 246
5.4B Chemical Composition of Carbon Steel Tubes and Pipes—With Impact Testing Below-20°C 249

5.5 Alloy Steel Tubes and Pipes for Low-Temperature Service 251
5.5A Chemical Composition of Alloy Steel Tubes and Pipes for Low-Temperature Service 251
5.5B Mechanical Properties of Alloy Steel Tubes and Pipes for Low-Temperature Service 252

5.6 Carbon Steel Tubes and Pipes for Pressure Purposes 255
5.6A Mechanical Properties of Carbon Steel Tubes and Pipes for Pressure Purposes 255
5.6B Chemical Composition of Carbon Steel Tubes and Pipes for Pressure Purposes 258

5.7 Carbon Steel Tubes and Pipes for Pressure Purposes at High Temperatures 260
5.7A Mechanical Properties of Carbon Steel Tubes and Pipes for Pressure Purposes at High Temperatures 260
5.7B Chemical Composition of Carbon Steel Tubes and Pipes for Pressure Purposes at High Temperatures 264

5.8 Alloy Steel Tubes and Pipes for Pressure Purposes at High Temperatures 267
5.8.1A Chemical Composition of ½Mo Alloy Steel Tubes and Pipes for Pressure Purposes at High Temperatures 267
5.8.1B Mechanical Properties of ½Mo Alloy Steel Tubes and Pipes for Pressure Purposes at High Temperatures 267
5.8.2A Chemical Composition of ½Mo Alloy Steel Tubes and Pipes for Pressure Purposes at High Temperatures 268
5.8.2B Mechanical Properties of ½Mo Alloy Steel Tubes and Pipes for Pressure Purposes at High Temperatures 269
5.8.3A Chemical Composition of \(\frac{1}{2}\)Cr-\(\frac{1}{2}\)Mo Alloy Steel Tubes and Pipes for Pressure Purposes at High Temperatures 271

5.8.3B Mechanical Properties of \(\frac{1}{2}\)Cr-\(\frac{1}{2}\)Mo Alloy Steel Tubes and Pipes for Pressure Purposes at High Temperatures 272

5.8.4A Chemical Composition of \(\frac{1}{2}\)Cr-\(\frac{1}{2}\)Mo Alloy Steel Tubes and Pipes for Pressure Purposes at High Temperatures 273

5.8.4B Mechanical Properties of \(\frac{1}{2}\)Cr-\(\frac{1}{2}\)Mo Alloy Steel Tubes and Pipes for Pressure Purposes at High Temperatures 273

5.8.5A Chemical Composition of 1Cr-\(\frac{1}{2}\)Mo Alloy Steel Tubes and Pipes for Pressure Purposes at High Temperatures 274

5.8.5B Mechanical Properties of 1Cr-\(\frac{1}{2}\)Mo Alloy Steel Tubes and Pipes for Pressure Purposes at High Temperatures 275

5.8.6A Chemical Composition of 1\(\frac{1}{4}\)Cr-\(\frac{1}{2}\)Mo Alloy Steel Tubes and Pipes for Pressure Purposes at High Temperatures 276

5.8.6B Mechanical Properties of 1\(\frac{1}{4}\)Cr-\(\frac{1}{2}\)Mo Alloy Steel Tubes and Pipes for Pressure Purposes at High Temperatures 277

5.8.7A Chemical Composition of 2%Cr-\(\frac{1}{2}\)Mo Alloy Steel Tubes and Pipes for Pressure Purposes at High Temperatures 278

5.8.7B Mechanical Properties of 2%Cr-\(\frac{1}{2}\)Mo Alloy Steel Tubes and Pipes for Pressure Purposes at High Temperatures 279

5.8.8A Chemical Composition of 5Cr-\(\frac{1}{2}\)Mo Alloy Steel Tubes and Pipes for Pressure Purposes at High Temperatures 280

5.8.8B Mechanical Properties of 5Cr-\(\frac{1}{2}\)Mo Alloy Steel Tubes and Pipes for Pressure Purposes at High Temperatures 281

5.8.9A Chemical Composition of 9Cr-\(\frac{1}{2}\)Mo Alloy Steel Tubes and Pipes for Pressure Purposes at High Temperatures 283

5.8.9B Mechanical Properties of 9Cr-\(\frac{1}{2}\)Mo Alloy Steel Tubes and Pipes for Pressure Purposes at High Temperatures 284

5.9 Stainless Steel Tubes and Pipes for Pressure Purposes and High Temperatures 286

5.9.1A Chemical Composition of Ferritic and Martensitic Stainless Steel Tubes and Pipes for Pressure Purposes and High Temperatures 286

5.9.1B Mechanical Properties of Ferritic and Martensitic Stainless Steel Tubes and Pipes for Pressure Purposes and High Temperatures 287

5.9.2A Chemical Composition of Austenitic Stainless Steel Tubes and Pipes for Pressure Purposes and High Temperatures 288

5.9.2B Mechanical Properties of Austenitic Stainless Steel Tubes and Pipes for Pressure Purposes and High Temperatures 298

5.10 Line Pipe Steels 316

5.10.1A Mechanical Properties of Line Pipe Steels Without Notch Toughness Requirements 316

5.10.1B Chemical Composition of Line Pipe Steels Without Notch Toughness Requirements 318

5.10.2A Mechanical Properties of Line Pipe Steels With Notch Toughness Requirements 321

5.10.2B Chemical Composition of Line Pipe Steels With Notch Toughness Requirements 324

6. Steel Forgings 329
6.1 Carbon Steel Forgings

6.1.1A Mechanical Properties of Carbon Steel Forgings for General Use

6.1.1B Chemical Composition of Carbon Steel Forgings for General Use

6.1.2A Mechanical Properties of Carbon Steel Forgings for Piping, Pressure Vessel, and Components

6.1.2B Chemical Composition of Carbon Steel Forgings for Piping, Pressure Vessel and Components

6.2 Alloy Steel Forgings

6.2.1A Chemical Composition of 1%Cr-1%Mo Alloy Steel Forgings for General Use

6.2.1B Mechanical Properties of 1%Cr-1%Mo Alloy Steel Forgings for General Use

6.2.2 Alloy Steel Forgings for Piping, Pressure Vessel and Components

6.2.2.1A Chemical Composition of Mo Alloy Steel Forgings for Piping, Pressure Vessel and Components

6.2.2.1B Mechanical Properties of Mo Alloy Steel Forgings for Piping, Pressure Vessel and Components

6.2.2.2A Chemical Composition of 1/4Cr-1/2Mo Alloy Steel Forgings for Piping, Pressure Vessel and Components

6.2.2.2B Mechanical Properties of 1/4Cr-1/2Mo Alloy Steel Forgings for Piping, Pressure Vessel and Components

6.2.2.3A Chemical Composition of 1Cr-1/2Mo Alloy Steel Forgings for Piping, Pressure Vessel and Components

6.2.2.3B Mechanical Properties of 1Cr-1/2Mo Alloy Steel Forgings for Piping, Pressure Vessel and Components

6.2.2.4A Chemical Composition of 1/3Cr-1/3Mo Alloy Steel Forgings for Piping, Pressure Vessel and Components

6.2.2.4B Mechanical Properties of 1/3Cr-1/3Mo Alloy Steel Forgings for Piping, Pressure Vessel and Components

6.2.2.5A Chemical Composition of 2/5Cr-1Mo Alloy Steel Forgings for Piping, Pressure Vessel and Components

6.2.2.5B Mechanical Properties of 2/5Cr-1Mo Alloy Steel Forgings for Piping, Pressure Vessel and Components

6.2.2.6A Chemical Composition of 3Cr-1Mo Alloy Steel Forgings for Piping, Pressure Vessel and Components

6.2.2.6B Mechanical Properties of 3Cr-1Mo Alloy Steel Forgings for Piping, Pressure Vessel and Components

6.2.2.7A Chemical Composition of 5Cr-1/2Mo Alloy Steel Forgings for Piping, Pressure Vessel and Components

6.2.2.7B Mechanical Properties of 5Cr-1/2Mo Alloy Steel Forgings for Piping, Pressure Vessel and Components

6.2.2.8A Chemical Composition of 9Cr-1Mo Alloy Steel Forgings for Piping, Pressure Vessel and Components

6.2.2.8B Mechanical Properties of 9Cr-1Mo Alloy Steel Forgings for Piping, Pressure Vessel and Components
6.2.2.9A Chemical Composition of 11Cr-½Ni-1Mo Alloy Steel Forgings for Piping,
Pressure Vessel and Components 357
6.2.2.9B Mechanical Properties of 11Cr-½Ni-1Mo Alloy Steel Forgings for Piping,
Pressure Vessel and Components 357
6.2.2.10A Chemical Composition of Ni Alloy Steel Forgings for Piping,
Pressure Vessel and Components 357
6.2.2.10B Mechanical Properties of Ni Alloy Steel Forgings for Piping,
Pressure Vessel and Components 358
6.2.2.11A Chemical Composition of Ni-Mn Alloy Steel Forgings for Piping,
Pressure Vessel and Components 359
6.2.2.11B Mechanical Properties of Ni-Mn Alloy Steel Forgings for Piping,
Pressure Vessel and Components 359
6.2.2.12A Chemical Composition of 3½Ni-½Cr-Mo Alloy Steel Forgings for
Piping, Pressure Vessel and Components 361
6.2.2.12B Mechanical Properties of 3½Ni-½Cr-Mo Alloy Steel Forgings for
Piping, Pressure Vessel and Components 361
6.2.2.13A Chemical Composition of 3Ni-½Mo Alloy Steel Forgings for
Piping, Pressure Vessel and Components 362
6.2.2.13B Mechanical Properties of 3Ni-½Mo Alloy Steel Forgings for
Piping, Pressure Vessel and Components 362
6.2.2.14A Chemical Composition of 3½Ni-1½Cr-½Mo Alloy Steel Forgings for
Piping, Pressure Vessel and Components 363
6.2.2.14B Mechanical Properties of 3½Ni-1½Cr-½Mo Alloy Steel Forgings for
Piping, Pressure Vessel and Components 363

6.3 Stainless Steel Forgings 364
6.3.1A Chemical Composition of Martensitic Stainless Steel Forgings 364
6.3.1B Mechanical Properties of Martensitic Stainless Steel Forgings 365
6.3.2A Chemical Composition of Ferritic Stainless Steel Forgings 366
6.3.2B Mechanical Properties of Ferrite Stainless Steel Forgings 366
6.3.3A Chemical Composition of Austenitic Stainless Steel Forgings 367
6.3.3B Mechanical Properties of Austenitic Stainless Steel Forgings 373
6.3.4A Chemical Composition of Precipitation-Hardening Stainless Steel Forgings 379
6.3.4B Mechanical Properties of Precipitation-Hardening Stainless Steel Forgings 380
6.3.5A Chemical Composition of Duplex (Ferritic-Austenitic) Stainless Steel Forgings 381
6.3.5B Mechanical Properties of Duplex (Ferritic-Austenitic) Stainless Steel Forgings 383

7. Steel Castings 385
7.1 Cast Carbon Steels 389
7.1.1A Mechanical Properties of Cast Carbon Steel for General and Structural Applications 389
7.1.1B Chemical Composition of Cast Carbon Steel for General and Structural Applications 392
7.1.2A Mechanical Properties of Cast Carbon Steel for Pressure Purposes at High Temperatures 396
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1.2B</td>
<td>Chemical Composition of Cast Carbon Steel for Pressure Purposes at High Temperatures</td>
<td>397</td>
</tr>
<tr>
<td>7.1.3A</td>
<td>Mechanical Properties of Cast Carbon Steel for Pressure Purposes at Low Temperatures</td>
<td>398</td>
</tr>
<tr>
<td>7.1.3B</td>
<td>Chemical Composition of Cast Carbon Steel for Pressure Purposes at Low Temperatures</td>
<td>399</td>
</tr>
<tr>
<td>7.2</td>
<td>Cast Manganese Steels</td>
<td>400</td>
</tr>
<tr>
<td>7.2A</td>
<td>Chemical Composition of Cast Manganese Steels</td>
<td>400</td>
</tr>
<tr>
<td>7.2B</td>
<td>Mechanical Properties of Cast Manganese Steels</td>
<td>401</td>
</tr>
<tr>
<td>7.3</td>
<td>Cast Alloy Steels</td>
<td>402</td>
</tr>
<tr>
<td>7.3.1A</td>
<td>Chemical Composition of Cast Alloy Steels for General and Structural Purposes</td>
<td>402</td>
</tr>
<tr>
<td>7.3.1B</td>
<td>Mechanical Properties of Cast Alloy Steels for General and Structural Purposes</td>
<td>403</td>
</tr>
<tr>
<td>7.3.2A</td>
<td>Chemical Composition of Cast Alloy Steels for Pressure Purposes at High Temperatures</td>
<td>406</td>
</tr>
<tr>
<td>7.3.2B</td>
<td>Mechanical Properties of Cast Alloy Steels for Pressure Purposes at High Temperatures</td>
<td>407</td>
</tr>
<tr>
<td>7.3.3A</td>
<td>Chemical Composition of Cast Alloy Steels for Pressure Purposes at Low Temperatures</td>
<td>409</td>
</tr>
<tr>
<td>7.3.3B</td>
<td>Mechanical Properties of Cast Alloy Steels for Pressure Purposes at Low Temperatures</td>
<td>411</td>
</tr>
<tr>
<td>7.4</td>
<td>Cast Stainless Steels</td>
<td>413</td>
</tr>
<tr>
<td>7.4.1</td>
<td>Cast Stainless Steels for General and Corrosion Resistant Applications</td>
<td>413</td>
</tr>
<tr>
<td>7.4.1.1A</td>
<td>Chemical Composition of Martensitic and Ferritic Stainless Steels for General and Corrosion Resistant Applications</td>
<td>413</td>
</tr>
<tr>
<td>7.4.1.1B</td>
<td>Mechanical Properties of Martensitic and Ferritic Stainless Steels for General and Corrosion Resistant Applications</td>
<td>414</td>
</tr>
<tr>
<td>7.4.1.2A</td>
<td>Chemical Composition of Austenitic Stainless Steels for General and Corrosion Resistant Applications</td>
<td>415</td>
</tr>
<tr>
<td>7.4.1.2B</td>
<td>Mechanical Properties of Austenitic Stainless Steels for General and Corrosion Resistant Applications</td>
<td>417</td>
</tr>
<tr>
<td>7.4.2</td>
<td>Cast Stainless Steels for Pressure Purposes</td>
<td>419</td>
</tr>
<tr>
<td>7.4.2.1A</td>
<td>Chemical Composition of Martensitic and Ferritic Stainless Steels for Pressure Purposes</td>
<td>419</td>
</tr>
<tr>
<td>7.4.2.1B</td>
<td>Mechanical Properties of Martensitic and Ferritic Stainless Steels for Pressure Purposes</td>
<td>421</td>
</tr>
<tr>
<td>7.4.2.2A</td>
<td>Chemical Composition of Austenitic Stainless Steels for Pressure Purposes</td>
<td>422</td>
</tr>
<tr>
<td>7.4.2.2B</td>
<td>Mechanical Properties of Austenitic Stainless Steels for Pressure Purposes</td>
<td>424</td>
</tr>
<tr>
<td>7.5</td>
<td>Cast Heat Resistant Steels</td>
<td>426</td>
</tr>
<tr>
<td>7.5A</td>
<td>Chemical Composition of Cast Heat Resistant Steels</td>
<td>426</td>
</tr>
<tr>
<td>7.5B</td>
<td>Mechanical Properties of Cast Heat Resistant Steels</td>
<td>430</td>
</tr>
<tr>
<td>8.</td>
<td>Wrought Stainless Steels</td>
<td>433</td>
</tr>
<tr>
<td>8.1</td>
<td>Stainless Steels: Plate, Sheet, and Strip</td>
<td>438</td>
</tr>
<tr>
<td>8.1.1A</td>
<td>Chemical Composition of Martensitic Stainless Steels</td>
<td>438</td>
</tr>
<tr>
<td>8.1.1B</td>
<td>Mechanical Properties of Martensitic Stainless Steels</td>
<td>440</td>
</tr>
<tr>
<td>8.1.2A</td>
<td>Chemical Composition of Ferritic Stainless Steels</td>
<td>445</td>
</tr>
<tr>
<td>8.1.2B</td>
<td>Mechanical Properties of Ferritic Stainless Steels</td>
<td>450</td>
</tr>
<tr>
<td>8.1.3A</td>
<td>Chemical Composition of Austenitic Stainless Steels</td>
<td>458</td>
</tr>
</tbody>
</table>
9. Steels for Special Use 607

9.1 Free-Machining Steels 611

9.1.1 Chemical Composition of Resulfurized Carbon Steels for Free-Machining Applications 611

9.1.2 Chemical Composition of Rephosphorized and Resulfurized Carbon Steels for Free-Machining Applications 613

9.1.3 Chemical Composition of Resulfurized and Leaded Carbon Steels for Free-Machining Applications 614

9.1.4 Chemical Composition of Rephosphorized, Resulfurized, and Leaded Carbon Steels for Free-Machining Applications 614

9.1.5 Chemical Composition of Free-Machining Stainless Steels 615

9.2 Spring Steels 615

9.2.1 Chemical Composition of Cold Rolled Carbon Spring Steels 615

9.2.1.1 Chemical Composition of Cold Rolled Carbon Wire Spring Steels 615

9.2.1.2 Chemical Composition of Cold Rolled Carbon Strip Spring Steels 616

9.2.2 Chemical Composition of Hot Rolled Alloy Spring Steels 618

9.2.2.1 Chemical Composition of Hot Rolled Si Alloy Spring Steels 618

9.2.2.2 Chemical Composition of Hot Rolled Cr Alloy Spring Steels 618

9.2.2.3 Chemical Composition of Hot Rolled Cr-Si Alloy Spring Steels 619

9.2.2.4 Chemical Composition of Hot Rolled Cr-Mo Alloy Spring Steels 619

9.2.2.5 Chemical Composition of Hot Rolled Cr-V Alloy Spring Steels 620

9.2.2.6 Chemical Composition of Hot Rolled Cr-B Alloy Spring Steels 621
This is the book I never wanted to write but always wanted to own. As a metallurgical engineer and long-time user of steel standards, author of the four CASTI Metals Data Books, and as a member of ASTM, ISO, and SAE steel standard committees, I knew all too well the many pitfalls and challenges of writing such a handbook. There were many steel standards from around the world that were new to me and that created many surprises, including the Chinese GB steel standards, which were translated into English by the metallurgical engineers of CASTI Publishing, Inc.

Comparing steel standards is not an exact science, so the biggest challenge in preparing such a book was deciding on the “rules of comparison.” Of the similar books on the market today, none explain in detail why one steel is comparable to another. They simply appear together in a list of steels. I kept a daily diary to help construct a workable set of comparison rules that I could share with other users to assist them in understanding how and why one steel is comparable to another.

When writing the first edition of this book (DS67A), these rules changed from chapter to chapter while the book was being written. It was not until the last chapter and the appendix were completed that I was able to finalize the rules of comparison. In the end, a complete review of the book was performed, resulting in the reorganization of some chapters and the fine-tuning of others. There were too many occasions when I thought the book was finished, only to have to change, add, or delete a rule that made yet another review of the book necessary.

My writing of this fifth edition (DS67D) was greatly assisted by using the ASTM Passport to Steel database. Without it, the handbook would be much smaller. The addition of data from Chinese GB and ASME steel standards has significantly improved this edition. With the use of the ASTM Passport to Steel database, many new comparable steels were also added to this edition.

I hope you enjoy using this handbook as much as I have. Tie a chain to it and anchor it to your desk because once others see it, you may never see the book again.

I am interested in your comments and suggestions for improving this handbook and encourage you to send your feedback directly to ASTM.

John E. Bringas, P.Eng.
President and Metallurgical Engineer
CASTI Publishing, Inc.
Acknowledgments

The author gratefully acknowledges the assistance of Michael Ling, P.Eng., and Toan Huynh, P.Eng., whose work in compiling and organizing the data was of particular importance. A special acknowledgment is made to Yin Huang, Ph.D., who was the lead metallurgical engineering translator of the Chinese GB steel standards. Without his dedicated work, the GB data included here would not have maintained the high quality standard for which this handbook is known worldwide. The advice given by these individuals when difficult technical decisions had to be made is appreciated.

Several colleagues from ASTM, Society of Automotive Engineers (SAE), and International Standards Organization (ISO) committees were contacted for their input during the progress of this handbook, including ASTM committee members Ralph Davison, Frank Christensen, and John Mahaney; Günter Briefs and Baoshi Liu from the ISO; and Mel Head of the SAE. They added valuable insights into the history and technical aspects of the standards data found in this handbook.

The ASTM publishing staff, most notably John Pace, David Von Glahn, Kathy Dernoga, and Monica Siperko, were very supportive of my requests to obtain access to the hundreds of standards needed to write this handbook. Their patience and confidence in my ability to complete the work is appreciated. Thank you all.

The author also acknowledges the dedicated assistance of the Codes and Standards Training Institute (CASTI) staff who assisted in the research, entered data, and who updated the book with care and diligence.

A special thanks is extended to Information Handling Service (IHS) Engineering Products for permitting the use of their Engineering Resource Center (ERC).

One person could not have produced this handbook. It took a dedicated team of professionals. These acknowledgments cannot adequately express the author’s sincere appreciation and gratitude for everyone’s assistance. Without it, this handbook would never have been completed.
Getting Started With This Book

The intent of this handbook is to allow the user to identify comparable steels that are found in standards from around the world and then to evaluate each complete standard on its own merit to ensure that the selected steel is suited for the intended application. This handbook is not designed to be the sole source of information for selecting a comparative steel and is not intended to be used as a replacement for steel standards. This handbook is one tool in the process of comparing steel standards from around the world.

Comparing steel standards is not an exact science, and there is no foolproof method. When you begin to use this handbook, you will quickly discover that there is no such thing as “equivalent” steel standards. The user must also be aware that not all steels have comparative counterparts. Before proceeding directly to the contents of this handbook, it is strongly recommended that you read Chapter 1, which includes a detailed explanation of the “rules of comparison” used in this handbook.

Because there was often insufficient space on one page to place both the chemical composition and mechanical properties tables, they were split into two separate tables. To assist the user in keeping track of which comparison criteria were used for a given steel, each table within a chapter was sequentially numbered and appended with either the letter A or B. Table numbers ending in the letter A designate that the table was the main criterion used for comparison; whereas table numbers ending with the letter B were “mirrored” from the A table.

Each group of steel data in the tables is separated by two types of horizontal lines: black and gray. Black lines separate groups of steels that are more closely comparable to each other; whereas gray lines separate steel data within a comparative group.

Caution: The pages of this handbook are formatted to keep comparative groups together as much as possible. However, when a group of comparative steels extends to more than one page, a note is placed at the bottom of the page to indicate that the comparative group continues on the following page (i.e., “NOTE: This section continues on the next page”).

Appendix 2 and Appendix 4 include lists of withdrawn and replaced standards that should always be checked when trying to find comparable steels. This handbook, unlike many others, includes the year-date of each standard, which is critical when trying to identify the status of a standard.
The book editor, John E. Bringas, P.Eng., is president and founder of Codes and Standards Training Institute (CASTI), headquartered in Edmonton, Alberta, Canada. A metallurgical and materials engineer, he is an engineering codes and standards information specialist with over 40 years of experience. He understands the needs of the users of this handbook because he is one himself. Mr. Bringas also authored the ASTM Handbook of Steel Data: American and European and is the principle developer of the ASTM Passport to Steel Online Database. Mr. Bringas has been teaching codes and standards related courses worldwide through CASTI (www.casti.ca) since 1989. Mr. Bringas has been a codes and standards committee member since 1982 and currently serves on:

- ASTM Steels (Chair of Steel Terminology), Coated Steels, Nonferrous Alloys (Chair of Nonferrous Terminology), Metallography, Mechanical Testing;
- ISO TC23/SC4 Steels, Canadian delegate; and

Mr. Bringas is also a long-time member of the American Welding Society (AWS), ASME International, and ASM International.