Foreword

This publication was sponsored by ASTM Committee D33 on Protective Coating and Lining Work for Power Generation Facilities. Its creation and maintenance is the responsibility of Subcommittee D33.10 on Protective Coatings Maintenance Work for Power Generation Facilities. This subcommittee is composed of representatives from various organizations involved with manufacturing, specifying, applying, and using protective coatings to control corrosion and erosion issues in nuclear power facilities. Subcommittee members include individuals from utilities, architects/engineers/constructors, coating inspection service providers, and other interested parties. The first edition was originally published in December 1990.

In the 1990s and early 2000s, numerous changes evolved with regard to nuclear power coatings. Operating experience, lessons learned, and regulatory changes have resulted in many changes to the way nuclear power plant coatings are selected, evaluated, applied, monitored, and repaired. Due to the magnitude of these changes, Subcommittee D33.10 felt it was prudent to revise this publication to reflect those changes. The information presented herein reflects a consensus of the subcommittee members of D33.10 as of 22 May 2015.

This manual was prepared to address a need perceived by ASTM Committee D33 for guidance in selecting and applying maintenance coatings in nuclear plants but is not to be considered a standard. In addition to serving as that source of guidance, this document has the equally necessary role of acting as a focal point for a rapidly changing technology. While Subcommittee D33.10 considers the information contained in this manual to be state of the art, the book offers limited historical data upon which to establish detailed requirements or methodologies. Accordingly, the user will find this edition rather general. The details of these practices are found in the various cited standards and standard guides referenced throughout and listed in the appendix. ASTM Standard D4538, “Standard Terminology Relating to Protective Coating and Lining Work for Power Generation Facilities,” contains the definitions of the terms used in this publication.

This manual does not purport to address all the safety concerns, if any, associated with the use of the referenced standards. It is the responsibility of the user of this manual to establish appropriate safety and health practices and to determine the applicability of regulatory limitations prior to use.

Daniel L. Cox
Structural Integrity Associates
2321 Calle Almirante
San Clemente, CA 92673
Contributors

Paul Abate, Williams Specialty Services
Gary D. Alkire, Exelon Corporation
Timothy S. Andreychek, Westinghouse Electric Co.
Andy Baer, Carboline Co.
Peter Blattner, Baker Concrete
Jon R. Cavallo, PE, Jon R. Cavallo, PE LLC
Judy Cheng, Pacific Gas and Electric Co.
Daniel L. Cox, Structural Integrity Associates
Michael Damiano, Society for Protective Coatings
John F. De Barba, PPG Protective & Marine Coatings
Bruce Dullum, Carboline Co. (retired)
Michael E. Fraley, Luminant
John O. Kloepper, Carboline Co.
Steve L. Liebhart, Carboline Co.
Richard L. Martin, Altran Solutions
Keith A. Miller, Sargent & Lundy LLC
Bryan M. Monteon, Sherwin-Williams
Christopher Palen, PPG Protective & Marine Coatings
Timothy B. Ridlon, First Energy Corp.
Timothy Shugart, Alliant Energy
Carol J. Uraine, Arizona Public Service
Charles Vallance, UESI
Acronyms

3M Minnesota Mining and Manufacturing
ABWR Advanced boiling water reactor
ALARA As low as reasonably achievable
ANSI American National Standards Institute
ASTM ASTM International (formerly American Society for Testing and Materials)
BWR Boiling water reactor
CFR Code of Federal Regulations
CSL I Coatings Service Level I
CSL II Coatings Service Level II
CSL III Coatings Service Level III
DBA Design basis accident
DSC Digital still camera
ECCS Emergency core cooling system
EPA Environmental Protection Agency
EPRI Electric Power Research Institute
ESS Engineered safety system
FME Foreign material exclusion
FSAR Final safety analysis report
GC Gas chromatograph
HEPA High efficiency particulate air
HP Health physics
HPWC High pressure water cleaning
HVAC Heating, ventilation, and air conditioning
LOCA Loss of coolant accident
LOTO Lockout/tagout
LPWC Low pressure water cleaning
MOS Maximum operating speed
MP Magnetic particle testing
NACE NACE International (formerly National Association of Corrosion Engineers)
NFPA National Fire Protection Association
NIOSH National Institute of Occupational Safety and Health
NIST National Institute of Standards and Technology
NPP Nuclear power plant
NRC Nuclear Regulatory Commission
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>OSHA</td>
<td>Occupational Safety and Health Administration</td>
</tr>
<tr>
<td>PA</td>
<td>Protected area</td>
</tr>
<tr>
<td>PC</td>
<td>Protective clothing</td>
</tr>
<tr>
<td>PT</td>
<td>Penetrant (dye) testing</td>
</tr>
<tr>
<td>PWR</td>
<td>Pressurized water reactor</td>
</tr>
<tr>
<td>QA</td>
<td>Quality assurance</td>
</tr>
<tr>
<td>QC</td>
<td>Quality control</td>
</tr>
<tr>
<td>RCA</td>
<td>Radiological controlled area</td>
</tr>
<tr>
<td>Reg. Guide</td>
<td>Regulatory guide</td>
</tr>
<tr>
<td>RHR</td>
<td>Residual heat removal</td>
</tr>
<tr>
<td>ROS</td>
<td>Recommended operating speed</td>
</tr>
<tr>
<td>RT</td>
<td>Radiographic testing</td>
</tr>
<tr>
<td>SAR</td>
<td>Safety analysis report</td>
</tr>
<tr>
<td>SSC</td>
<td>System, structure, or component</td>
</tr>
<tr>
<td>SSPC</td>
<td>The Society for Protective Coatings (formerly Steel Structures Painting Council)</td>
</tr>
<tr>
<td>TTP</td>
<td>Time temperature pressure</td>
</tr>
<tr>
<td>UHPWC</td>
<td>Ultra-high pressure water cleaning</td>
</tr>
<tr>
<td>UT</td>
<td>Ultrasonic test</td>
</tr>
<tr>
<td>VOC</td>
<td>Volatile organic compound</td>
</tr>
<tr>
<td>WJ</td>
<td>Water jetting</td>
</tr>
</tbody>
</table>
Contents

Foreword iii
Contributors v
Acronyms vii

1 Protecting Surfaces in a Nuclear Plant
 Andy Baer and Bruce Dullum 1

2 Significance of Maintenance Coating
 Richard L. Martin and Daniel L. Cox 5

3 In-Service Condition Monitoring and Assessment
 Timothy Shugart and Daniel L. Cox 7

4 Preparing for Maintenance Coating
 Timothy Shugart, Timothy B. Ridlon, and Peter Blattner 11

5 Planning and Scheduling Maintenance Coating Work
 Daniel L. Cox 17

6 Qualification of Nuclear-Grade Maintenance Coatings
 John O. Kloepper and Steve L. Liebhart 19

7 Coating Materials
 John F. De Barba and Christopher Palen 23

8 Practical Methods of Surface Preparation for Maintenance Painting
 Jon R. Cavallo 29

9 Practical Methods of Coating Application
 Bryan M. Monteon 33

10 Inspection
 Keith A. Miller and Judy Cheng 35

11 Safety
 Daniel L. Cox 39

12 Personnel Training and Qualification
 Daniel L. Cox 43

13 Underwater Maintenance of Nuclear-Safety-Related Immersion Service Coatings
 Charles Vallance 45

Appendix 51