Index

A
abandonment, well, 581, 585–586, 585 (table), 586 (figure), 591, 593
above ground factors, offshore development cost, 613, 613 (figure)
aboveground storage tanks. See storage
absolute open flow (AOF), 401–404, 401 (table), 402 (figure), 403 (figure), 403 (table)
absolute permeability, 11, 13–14
absolute porosity, 10, 55
accidents, 543, 553, 553 (figure), 706, 708. See also safety accumulation history. See hydrocarbon migration and accumulation history simulation
acid rain, 538
acids, microbial, 470
acoustic logging, 17
acoustic resonance technique (ART), 489
active solar energy, 684
actual models, numerical reservoir simulation, 191
additives
asphaltene deposition treatment, 498–499
hydraulic fracturing, 325, 326 (table), 352, 365–366
adsorption
asphaltene, 493
deposition, 493
polymer, 260 (table)
surfactant, 281–283, 282 (table)
adsorption isotherms, capillary pressure by, 78–79, 78 (figure)
active microorganisms, in oil reservoirs, 462, 467, 468. See also microbial enhanced oil recovery
Africa, regulatory framework in, 536–537
air emissions. See emissions
alarms, emergency, 561–562
Alberta Taciuk Process (ATP), 339–340, 339 (figure)
Albian's process, 317
Alcaligenes strains, in MEOR, 473
algorithms, decommissioning cost, 585–591
capillary platform removal, 589–590, 590 (table)
fixed platform removal, 589–590, 590 (table)
floating structure removal, 590–591, 590 (table)
overview, 584
pipeline decommissioning, 587–588, 588 (table)
well plugging and abandonment, 585–586, 586 (figure)
algal flooding, 285
alkaline flooding, 285
alkaline-surfactant-polymer (ASP) flooding, 285–286
alkanes, 65
ambient conditions, asphaltene precipitation in, 486–488
American Petroleum Institute (API), 547
American Petroleum Institute (API) gravity, 3, 36, 65, 302–303
American Shale Oil, 386
Amott test, 72–73, 72 (figure)
amphoteric surfactants, 278 (table)
analytic microorganisms, in oil reservoirs, 462–463. See also microbial enhanced oil recovery
analogies, reserve, 44
ancient geothermal fields. See geothermal field evolution simulation
anionic surfactants, 278 (table)
anisotropic (directional) permeability, 6, 10
anisotropic geothermal field 3D dynamic simulation, 117–118, 118 (figure)
anisotropy, 88–89, 89 (figure)
antiagglomerants (AAs), 438, 439
anticlinal traps, 1
antifreeze, preventing hydrate formation with, 241–242
apatite fission track method (AFT), 121
appendage geothermal field, 116
aqueous stability tests, 279
aquifer activity, Messoyakha deposit, 454, 456, 456 (figure)
Arbuckle reservoir, polymer gel system in, 268, 270
Archie's equations, 60
Arctic development, deepwater, 302, 343–344, 344 (figure), 345 (table), 347
Arctic environments, methane hydrate accumulation in, 333, 334 (figure)
areal sweep efficiency, 256–258, 257 (figure), 257 (table)
aromatics, 65, 485–486, 486 (figure)
Arps decline forecasting, 367, 367 (table), 368–369, 368 (figure)
Arps equation, 60
artificial intelligence. See artificial neural networks; oil field data mining
artificial islands, 225, 226 (figure), 227 (figure)
artificial lift, 337, 681
artificial neural networks
Dongying Sag petroleum system example, 144–145, 144 (figure), 145 (figure)
hidden layers, 150, 150 (figure), 151
input layer, 150, 150 (figure), 151
mechanics of operation, 150–152, 150 (figure), 151
output layer, 150, 150 (figure), 151
overview, 149
petroleum migration and accumulation simulation, 123–124, 126–130, 126 (figure), 127 (figure), 131 (figure)
production optimization
data availability and statistical analysis, 168–170, 169 (table), 170 (table)
data-driven modeling, 170–173, 171 (figure), 172 (figure)
full-asset type curve analysis, 174, 175 (figure)
single-well, single-parameter sensitivity analysis, 173, 173 (figure)
single-well, type curve analysis, 173, 174 (figure)
single-well uncertainty analysis, 174–175, 175 (figure)
reservoir characterization
synthetic model, 155 (figure), 155 (table), 156–159, 156 (figure), 157 (figure), 158 (figure), 158 (table), 159–161 (figure), 161 (table)
<table>
<thead>
<tr>
<th>Page</th>
<th>Text</th>
</tr>
</thead>
<tbody>
<tr>
<td>712</td>
<td>Valley Field case study, 161–164, 162 (figure), 163 (figure), 164 (table), 165–168 (figure), 165 (table)</td>
</tr>
<tr>
<td>712</td>
<td>structure of, 149–150, 150 (figure)</td>
</tr>
<tr>
<td>712</td>
<td>training set, 151–152, 156–157, 157 (figure), 158 (figure), 158 (table)</td>
</tr>
<tr>
<td>712</td>
<td>trap geological evaluation, 131–132</td>
</tr>
<tr>
<td>712</td>
<td>unit bodies, 126, 126 (figure), 129–130</td>
</tr>
<tr>
<td>712</td>
<td>verification data set, 151, 158 (figure), 158 (table)</td>
</tr>
<tr>
<td>712</td>
<td>weights on inputs, 151–152</td>
</tr>
<tr>
<td>712</td>
<td>See also oil field data mining</td>
</tr>
<tr>
<td></td>
<td>Asia</td>
</tr>
<tr>
<td></td>
<td>associations pertaining to oil and gas industry, 547–548</td>
</tr>
<tr>
<td></td>
<td>energy future, 707</td>
</tr>
<tr>
<td></td>
<td>regulatory framework in, 534–535</td>
</tr>
<tr>
<td></td>
<td>asphaltene deposition, 483–499</td>
</tr>
<tr>
<td></td>
<td>case study, 497–498, 497 (figure), 498 (figure)</td>
</tr>
<tr>
<td></td>
<td>current research areas, 499</td>
</tr>
<tr>
<td></td>
<td>definition and classification of asphaltenes, 483–485, 484 (figure), 485 (table)</td>
</tr>
<tr>
<td></td>
<td>experimental determination of, 492–495</td>
</tr>
<tr>
<td></td>
<td>impact on oil production, 483</td>
</tr>
<tr>
<td></td>
<td>mitigation and remediation strategies, 498–499</td>
</tr>
<tr>
<td></td>
<td>modeling methods to predict, 495–497, 496 (figure)</td>
</tr>
<tr>
<td></td>
<td>SARA analysis, 485–486, 486 (figure)</td>
</tr>
<tr>
<td></td>
<td>See also asphaltene precipitation</td>
</tr>
<tr>
<td></td>
<td>asphaltene deposition inhibitors, 498–499</td>
</tr>
<tr>
<td></td>
<td>asphaltene onset pressures (AOPs), 488–489</td>
</tr>
<tr>
<td></td>
<td>asphaltene precipitation, 486–492</td>
</tr>
<tr>
<td></td>
<td>case study, 492, 492 (figure)</td>
</tr>
<tr>
<td></td>
<td>experimental determination of, 486–490</td>
</tr>
<tr>
<td></td>
<td>modeling methods to predict, 490–492</td>
</tr>
<tr>
<td></td>
<td>overview, 486, 607</td>
</tr>
<tr>
<td></td>
<td>associated gas, 377</td>
</tr>
<tr>
<td></td>
<td>associations for health, safety, and environment, 547–548</td>
</tr>
<tr>
<td></td>
<td>Atlantis project, 653. See also semisubmersibles</td>
</tr>
<tr>
<td></td>
<td>atmosphere flow, 125</td>
</tr>
<tr>
<td></td>
<td>atmospheric effects</td>
</tr>
<tr>
<td></td>
<td>environmental concerns, 537–538, 537 (figure), 538 (figure)</td>
</tr>
<tr>
<td></td>
<td>minimizing, 554</td>
</tr>
<tr>
<td></td>
<td>See also emissions</td>
</tr>
<tr>
<td></td>
<td>Australia, regulatory framework in, 536</td>
</tr>
<tr>
<td></td>
<td>average angle method, 221–222, 222 (figure)</td>
</tr>
<tr>
<td></td>
<td>average molecular weight. See molecular weight</td>
</tr>
<tr>
<td></td>
<td>average temperature and compressibility method, 406</td>
</tr>
<tr>
<td></td>
<td>axial coring, 61</td>
</tr>
<tr>
<td></td>
<td>axial load distribution, drill string, 198–199, 201 (figure)</td>
</tr>
<tr>
<td></td>
<td>axially vibrating drilling tools, 225</td>
</tr>
<tr>
<td></td>
<td>B</td>
</tr>
<tr>
<td></td>
<td>Bacillus strains, in MEOR, 471–472, 473</td>
</tr>
<tr>
<td></td>
<td>back-propagation algorithm, 152</td>
</tr>
<tr>
<td></td>
<td>backward-difference approximation, 183, 183 (figure)</td>
</tr>
<tr>
<td></td>
<td>bacteria, in oil reservoirs, 462–463. See also microbial enhanced oil recovery</td>
</tr>
<tr>
<td></td>
<td>Bahrain, regulatory framework in, 534–535</td>
</tr>
<tr>
<td></td>
<td>Barnett Shales play, 322, 322 (figure), 328</td>
</tr>
<tr>
<td></td>
<td>basin simulation. See 3D dynamic simulation of pool-forming Beggs and Brill correlation for multiphase flow, 409–411, 409 (table)</td>
</tr>
<tr>
<td></td>
<td>below ground factors, offshore development cost, 612–613, 613 (figure)</td>
</tr>
<tr>
<td></td>
<td>bending force, 224, 224 (figure)</td>
</tr>
<tr>
<td></td>
<td>benthic ecosystems, environmental concerns in, 542–543</td>
</tr>
<tr>
<td></td>
<td>biodegradation, oil, 462, 466, 467</td>
</tr>
<tr>
<td></td>
<td>bioemulsifiers, 472</td>
</tr>
<tr>
<td></td>
<td>biofilms, 470</td>
</tr>
<tr>
<td></td>
<td>biofuels, 33, 40, 40 (figure), 40 (table)</td>
</tr>
<tr>
<td></td>
<td>biological hazards, 547, 561</td>
</tr>
<tr>
<td></td>
<td>biological neural networks, 149, 150 (figure)</td>
</tr>
<tr>
<td></td>
<td>biological stability of polymers, 261 (table)</td>
</tr>
<tr>
<td></td>
<td>biological treatment of wastewater, 556 (table)</td>
</tr>
<tr>
<td></td>
<td>biology. See microbiology of petroleum reservoirs biopolymers, 470, 471</td>
</tr>
<tr>
<td></td>
<td>bioremediation, oil, 466</td>
</tr>
<tr>
<td></td>
<td>biosurfactants, 286, 287, 466–467, 469–473</td>
</tr>
<tr>
<td></td>
<td>Biot coefficient, 89–90</td>
</tr>
<tr>
<td></td>
<td>bit hydraulics optimization, 210</td>
</tr>
<tr>
<td></td>
<td>bit-operating conditions, 197</td>
</tr>
<tr>
<td></td>
<td>bits, drill, 205–207, 206 (figure), 207 (figure)</td>
</tr>
<tr>
<td></td>
<td>bit-side forces, 224, 224 (figure)</td>
</tr>
<tr>
<td></td>
<td>bitumen</td>
</tr>
<tr>
<td></td>
<td>classification of, 287 (table)</td>
</tr>
<tr>
<td></td>
<td>energy future, 37–39, 38 (figure), 38 (table)</td>
</tr>
<tr>
<td></td>
<td>oil sands mining</td>
</tr>
<tr>
<td></td>
<td>bitumen extraction, 317</td>
</tr>
<tr>
<td></td>
<td>bitumen upgrading, 318–319, 320 (figure), 320 (table)</td>
</tr>
<tr>
<td></td>
<td>challenges of, 319, 320 (figure)</td>
</tr>
<tr>
<td></td>
<td>general discussion, 345–346</td>
</tr>
<tr>
<td></td>
<td>oil sand tailings, 317–318, 318 (figure), 318 (table), 319 (table)</td>
</tr>
<tr>
<td></td>
<td>overview, 302, 316–317</td>
</tr>
<tr>
<td></td>
<td>overview, 9</td>
</tr>
<tr>
<td></td>
<td>physical properties of, 302–303, 302 (table)</td>
</tr>
<tr>
<td></td>
<td>production overview, 321</td>
</tr>
<tr>
<td></td>
<td>worldwide distribution of, 303–304, 303 (figure), 304 (figure)</td>
</tr>
<tr>
<td></td>
<td>See also specific recovery methods; thermal recovery methods</td>
</tr>
<tr>
<td></td>
<td>black oil, 3, 68, 68 (figure), 68 (table)</td>
</tr>
<tr>
<td></td>
<td>black-oil formulation, numerical reservoir simulation, 179, 179 (table), 180, 181</td>
</tr>
<tr>
<td></td>
<td>Blind Faith development, 654. See also semisubmersibles</td>
</tr>
<tr>
<td></td>
<td>blind rams, 205, 205 (figure)</td>
</tr>
<tr>
<td></td>
<td>block-centered gridding, in numerical reservoir simulation, 185, 185 (figure)</td>
</tr>
<tr>
<td></td>
<td>blocks and tackle, 199 (figure), 199 (table)</td>
</tr>
<tr>
<td></td>
<td>blowout preventer (BOP) stack, 204–205, 205 (figure), 226</td>
</tr>
<tr>
<td></td>
<td>blowouts, 546, 558, 558 (figure), 618</td>
</tr>
<tr>
<td></td>
<td>Bohai oil field, polymer flooding in, 225–226</td>
</tr>
<tr>
<td></td>
<td>booster stations, 510–511, 510 (figure), 511 (figure)</td>
</tr>
<tr>
<td></td>
<td>borate, 358–359, 358 (figure)</td>
</tr>
<tr>
<td></td>
<td>bottom-founded systems, 225–226, 226 (figure), 227 (figure), 228 (figure), 229 (figure)</td>
</tr>
<tr>
<td></td>
<td>bottomhole assembly (BHA), 198, 200 (figure), 224, 224 (figure)</td>
</tr>
<tr>
<td></td>
<td>bottomhole pressure (BHP), 406–407, 417</td>
</tr>
<tr>
<td></td>
<td>bottom-up cost estimation, 582–583</td>
</tr>
<tr>
<td></td>
<td>bottom-up models, reserve depletion estimation, 47–48</td>
</tr>
<tr>
<td></td>
<td>boundary types, in numerical reservoir simulation, 185–187, 186 (figure), 187 (figure)</td>
</tr>
<tr>
<td></td>
<td>boundary-dominated flow (BDF), 399, 400, 416, 419</td>
</tr>
<tr>
<td></td>
<td>bow-tie analysis, 551, 551 (figure)</td>
</tr>
<tr>
<td></td>
<td>Boyle's law, 13, 55</td>
</tr>
<tr>
<td></td>
<td>Brazil, regulatory framework in, 535</td>
</tr>
<tr>
<td></td>
<td>Brazilian Indirect Tensile Strength Test, 98, 98 (figure)</td>
</tr>
<tr>
<td></td>
<td>breaker-free fracturing fluids, 363, 364 (figure)</td>
</tr>
<tr>
<td></td>
<td>breakers for fracturing fluids, 359–360, 361 (figure), 362 (figure)</td>
</tr>
<tr>
<td></td>
<td>Bright Water™ microgels, 267</td>
</tr>
</tbody>
</table>
bubble-point pressure, 3, 66–67, 67 (figure)
Buckley-Leverett equation, 75
Buffalo Valley Field. See synthetic model, reservoir
capacity; Valley Field reservoir characterization
build-up production period, gas field, 421–422, 421 (figure)
bulk modulus, 88, 88 (figure), 95
bulk-foam systems, 265
Bullwinkle platform, 573, 574 (figure), 576 (figure), 591

C
calibration
 data set for, artificial neural networks, 151, 158 (figure),
 158 (table)
 of models to actual field data, 102
 in numerical reservoir simulation, 119
Canada, regulatory framework in, 533
capacity
 pipeline, 510–511
 semisubmersible production, 631, 636 (table)
capacity-reserves relations, 635, 636, 637 (figure), 638 (figure)
capillary hysteresis, 70–71, 71 (figure)
capillary number, 71, 71 (figure), 276–277, 276 (figure)
capillary hysteresis and saturation history, 70–71, 71 (figure)
capillary pressure, 69–73
capillary viscosimetry method, 487–488
capillary-gravity-pressure equilibrium, 187, 187 (figure)
capillary resistance, 125
capillary viscosity measurement, 487–488
capillary-gravity-pressure equilibrium, 187, 187 (figure)
capillary pressure, 69–73
carbon dioxide (CO2)-enhanced CBM production, 332, 332 (figure)
carbon dioxide (CO2) foam, 363
carbon capture, utilization, and storage (CCUS), 706
carbon capture, utilization, and storage (CCUS), 706
carbon dioxide (CO2) flooding, 8, 274–276, 294, 294 (figure)
carbon dioxide (CO2) foam, 363
channel system evaluation model, 127–130
check valves, 511, 512 (figure)
chlorine (Cl2) hydrates, 432, 433, 434 (figure)
choke, flow control, 237, 241
choke line, BOP stack, 205
coking, world oil transit, 518, 518 (figure), 518 (table)
chemistry, SARA analysis, 485, 486
clay-dominated fracture reservoirs, methane hydrates in, 334
clay-dominated fracture reservoirs, methane hydrates in, 334
clay-dominated disseminated methane hydrate deposits, 334
claw, 2, 5–6, 11, 55. See also reservoir rock
clea, 34–35, 34 (figure), 657, 658 (figure)
clearoal, 7, 329, 330 (figure)
cleat, 7–8
coalbed methane (CBM), 329–332
defined, 321
deposition, 40–41, 41 (figure), 42 (table)
field development, 332, 333 (figure)
gas composition in reservoirs, 329
geological discussion, 346
overview, 7–8, 8 (figure), 302, 302, 329, 329 (figure)
production techniques, 331–332, 331 (figure), 332 (figure)
properties of, 330–331
coal-to-liquids (CTLs), 39, 40 (figure), 40 (table)
coating, pipeline and tank, 523–524
Colebrook formula, 405
collection platforms (CPs), 679
collicol models of asphaltens, 483, 485, 490, 491–492
colloidal-dispersion gels (CDGs), 267
Combination drive, 5, 250 (table)
compaction correction for stratum thickness, 115–116, 115 (figure)
compaction failure, 94
compaction, 94
compaction flow, 125
compaction yielding, 91
completion
 as phase of production, 530
 smart, 609
 well, 680–681
compliant towers, 600 (figure)
decommissioning cost, 591–593, 591–592 (table), 593, 595, 595 (figure)
decommissioning stages, 581–582
deepwater inventory, 573, 574–575 (table), 576 (figure), 576–577
comprehensive evaluation of trap, 133, 146, 146 (table)
compressibility
average temperature and compressibility method, 406
formation, 61
ideal gas, 62
oil, 66
petroleum product, 508–509
pore, 61, 61 (figure)
pore volume, 97–98
real gas, 63
reservoir rock, 60–61, 61 (figure)

compression, gas, 242–244, 243 (figure), 244 (figure)
compressors, for pipelines, 511, 512 (figure)
computational fluid dynamics (CFD), 496
conceptual models, numerical reservoir simulation, 191
condensate reservoirs, 3–4, 68, 68 (figure), 68 (table)
condensing-gas process, MCM, 273
condensing-vaporizing-gas process, MCM, 274
conductivity method, asphaltene precipitation studies, 487
conductor severance and removal
decommissioning cost, 585 (table), 586–587, 587 (figure), 592
overview, 582
confined spaces, workplace hazards in, 546, 560
connectivity factor, polymer flooding, 262–263
constant bottomhole pressure (CBHP), 214, 215 (figure)
consumption
energy future, 31–35, 31 (figure), 32 (figure), 33 (figure), 34 (figure)
natural gas, 26 (figure), 29–31, 29 (figure), 30 (table), 669, 671 (figure)
oil, 22 (figure), 24–26, 25 (figure), 26 (table), 666, 667 (figure)
prospective outlook on, 21
contact angle, 69, 69 (figure), 73
contact injuries, 543, 560
contamination. See environmental concerns
continuity equation, numerical reservoir simulation, 180, 181
continuous gas injection, 270, 270 (figure), 271 (figure)
continuous materials
assumption of continuity, 83, 84 (figure)
basic geomechanical parameters for, 95–96
continuum approach, flow equations, 180
contracts, offshore development, 614, 615
control systems, pipeline, 512–513, 514, 515 (figure)
convection, thermal, 117
conventional reservoirs, 6, 319, 321
conventional triaxial compression (CTC) test, 93 (figure), 96–97, 96 (figure), 97 (figure)
conversion processes, crude oil refining, 531
cooling water environmental concerns, 540
coordinates, directional well trajectory, 221–222, 221 (figure), 222 (figure)
Corbett method, SARA analysis, 485
core analysis
fluid saturations measurement, 14
limitations of, 15–16
overview, 11, 12, 61–62
permeability measurement, 13–14
porosity measurement, 13
routine, 13
special, 14–16
core tests, geomechanical, 96–101, 96 (figure), 97 (figure), 98 (figure), 99 (figure), 100 (figure)
core-flood experiments
asphaltene deposition studies, 494
to determine surfactant retention, 283
MEOR, 470–473
relative permeability, 74, 74 (figure)
Corey model, 75
coring, 11, 12, 61. See also core analysis
coriolis meters, 246–247, 246 (figure)
corner-point grid model
Dongying Sag petroleum system simulation, 137, 137 (figure)
fault displacement elimination and recovery, 112–113, 112 (figure), 113 (figure)
overview, 110–112, 111 (figure)
structural deformation recovery, 113–116, 113 (figure), 114 (figure), 115 (figure)
corrosion
by gas hydrates, 439, 440, 441, 441 (figure)
tank and pipeline, 523–524, 524 (figure)
costs, semisubmersible project
cost relations, 627–628, 628 (figure), 629 (figure), 629 (table), 630 (figure)
decommissioning, 626–627, 627 (table)
development, 625–626, 627 (table)
leases, 623–624, 625 (table)
revenue–cost relation, 638, 640 (figure), 641 (figure)
well, 624–625, 626 (table), 627 (table)
See also decommissioning cost estimation in deepwater GOM
Couette device, 493
coupling equation, heat conduction and convection, 117
creep, 92, 92 (figure)
cricondenbar, 3, 67
cricondentherm, 3, 67
critical micelle concentration (CMC), 278, 279 (figure)
critical point, reservoir fluid phase behavior, 3, 3 (figure), 66, 67, 67 (figure)
critical stress intensity factor. See fracture toughness
crosslinked polymer, for conformance control, 266 (figure), 266–270, 267 (figure), 267 (table), 268 (table), 269 (table)
cross-linked-gel fracturing, 325
cross-linking of guar, 358–359
cross-well seismic data, 154
crude oil
asphaltene deposition, effect on production, 483
classification of, 3
composition of, 64 (table)
dehydration of, at topsides facilities, 610–611
energy future, 31–33
GHG emissions related to type of, 683 (table)
history of, 529
major producers of, 529
overview, 461–462
pipelines for, 513, 513 (figure)
production process overview, 529–531, 530 (figure)
production stages, 249–255, 250 (figure), 252 (figure), 253 (figure), 254 (figure)
refining, 531
as reservoir fluid, 65–66, 66 (figure)
reservoir rock wettability, 71–72, 71 (figure)
SARA analysis, 485–486, 486 (figure)
See also microbiology of petroleum reservoirs; petroleum geomechanics; specific entries under ‘‘hydrocarbon’’; specific oil types; specific production and recovery processes; upstream oil supply chain

crude oil tankers, 517–518, 517 (figure), 517 (table)
crust thermal structure analysis, 118–120, 119 (table), 120 (table)
cryogenic tanks, 522–523, 523 (figure)
crystalline silicon PV (CSP) technology, 684, 684 (figure), 685 (figure), 686

crystals, gas hydrate, 429, 444, 444–445 (figure), 445
cubic EOS, 67

cubic equations of state, solubility models, 491

cubic-plus-association (CPA) model, 491

Cullender and Smith method, 406–410, 409 (table)
culture-dependent microbiology techniques, 463–464, 465

culture-independent microbiology techniques. See metagenomics
cumulative production function, 418
curve-fitting models, reserve depletion estimation, 46
cyclic MEOR, 286
cyclic steam stimulation (CSS)
overview, 9, 344
process characteristics, 304, 306 (table), 306–307
reservoir selection, 304, 305 (table)
SAGD/CSS Hybrid, 311
stages of, 304, 304 (figure)
cycloalkanes (naphthenes), 65

daisy chain looped system, subsea wells, 610, 611 (figure)
Daqing oil field, polymer flooding in, 262 (table), 263
Darcy units, 2
Darcy’s law, 13–14, 56–57, 71, 73, 181, 398–400
data acquisition system, drill rig, 205
data mining. See oil field data mining
data-driven modeling for production optimization, 170–173, 171 (figure), 172 (figure)
Davy, Sir Humphry, 432
decks, floating platforms, 577, 578 (figure), 582, 590, 601, 601 (figure)
decline curve analysis (DCA)
hydraulic fracturing, 366–369, 367 (table), 368 (figure), 368 (table), 369 (figure)
natural gas reserves, 415, 416–419
reserve estimation, 45

decline production period, gas field, 421 (figure), 422–423
deformation
monitoring, 102
overview, 83–85, 84 (figure), 85 (figure)
parameters for, 95–96
recovery of structural, 113–116, 113 (figure), 114 (figure), 115 (figure)
deradation
of guar-based solutions, 359–360, 361 (figure)
oil, 462, 466, 467
dehydratation
of gas hydrates, 437
natural gas, 244–245, 244 (figure)
in topsides facilities, 610–611
deliverability and inflow performance analysis, 398–404, 401 (table), 402 (figure), 403 (figure), 403 (table), 404 (figure)
deliverability testing, gas well, 401
Delta House project, 655. See also semisubmersibles
density
crude oil, 65, 66, 66 (figure)
ideal gas, 62
petroleum product, 508
real gas, 63
stock tank oil, 65
density diffusivity equation, 398
density-based PDA method, 418–420, 419 (figure), 420 (figure)
denudation volume estimation, 115, 115 (figure)
deployment drive, 4, 4 (figure), 250 (table)
deposition, asphaltene. See asphaltene deposition
depositional environments, reservoirs, 5–6
Index

depressurization
 in hydrate control, 437, 439–440
reservoir, for methane hydrate production, 334–335
depth, reservoir, 1, 2 (figure)
derrick, 199 (figure), 199 (table)
desalination, 366
desorption, coalbed methane, 8
desorption isotherms, capillary pressure by, 78–79, 78 (figure)
deterministic methods, reserve estimation, 44
development
 as life-cycle stage, 652
natural gas field, plan for, 420–425, 421 (figure), 422 (figure), 424 (figure), 425 (figure), 425 (table)
semisubmersible project
 cost of, 612–616, 613 (figure), 614 (figure), 615 (figure), 625–626, 627 (table), 643
development wells, 619, 620–621 (figure)
drilling schedule, 619, 622, 622 (figure), 622 (table)
flowline, umbilical, export pipeline, 623, 624 (table), 625 (figure)
risk involved, 617 (figure)
well counts and footage drilled, 622, 623 (figure)
well type, 623, 624 (table)
 Deviation, well trajectory, 223–224, 224 (figure)
Devonian period, 378, 378 (figure)
dew-point pressure, 3, 66–67, 67 (figure)
Diadema oil field, polymer flooding in, 264–265
diamond drag bits, 205–206, 207 (figure)
Dietz shape factors, 399, 400
dilute surfactant flooding, 283, 285 (figure)
dimensionality, numerical reservoir simulation model, 191
direct in situ deformation monitoring, 102
direct solution methods, numerical reservoir simulation, 188–189, 188 (figure)
directional drilling, 215–225
deviation, wander, and BHA design, 223–224, 224 (figure)
directional well trajectory coordinates, 221–222, 221 (figure), 222 (figure)
measuring well trajectories, 219
overview, 215–216, 216 (figure)
planning trajectory changes, 223, 223 (figure)
shale- and mudstone-hosted oil and gas, 373
subsurface steering tools, 219–221, 220 (figure), 221 (figure)
for tight gas, 322–323, 324 (figure)
torque and drag, 224–225, 225 (figure)
well trajectory terminology, 216–217, 217 (figure), 218 (figure), 219 (figure)
directional permeability, 6, 10
Dirichlet-type boundary condition, 186, 186 (figure)
disasters, 706, 708. See also safety
 discharging practice, safe, 526, 526 (figure)
discretized form of flow equations, 182–185, 182 (figure), 183 (figure), 185 (figure)
disproportionate permeability reduction (DPR), 268
 dissipative QCM, 493
dissolved-gas drive, 4, 4 (figure)
documentation, numerical reservoir simulation, 193–194
Dongying Sag petroleum system simulation, 134–146
 analysis on petroleum system, 134–136, 134 (figure), 135 (figure), 135 (table)
 artificial neural network simulation, 144–145, 144 (figure), 145 (figure)
geothermal field evolution simulation, 138–140, 139 (table), 140 (table), 141 (figure)
 hydrocarbon expulsion history, 142–144, 143 (figure), 143 (table)
 hydrocarbon generation history, 140–142, 142 (figure), 142 (table)
 structure-stratum framework evolution, 136–138, 136 (figure), 137 (figure), 138 (figure), 139 (figure)
 trap evaluation example, 145–146, 145 (figure), 146 (table)
downhole rotary systems, 200–201, 203 (figure), 204 (figure)
downhole sensors, 702–703, 703 (figure)
downstream oil production processes, 679
drag, in directional drilling, 224–225, 225 (figure)
drag bits, 205–206
drag coefficient, 233
 drainage conditions, poroelasticity, 90
draw works, 199 (figure), 199 (table)
drill bits, 205–207, 206 (figure), 207 (figure)
drill rig systems, 197–205
 hoisting system and drill strings, 198–199, 199 (figure), 199 (table), 200 (figure), 201 (figure)
 mud circulation system, 201–202, 202 (table), 204 (figure)
 overview, 197–198, 198 (figure)
 power system, 198
 rotary systems, 199–201, 202 (figure), 203 (figure), 204 (figure)
 well control system, 202, 204–205, 205 (figure)
 well monitoring system, 205
drill ships, 227–228, 230, 230 (figure)
drill strings, 198–199, 199 (figure), 200 (figure), 201 (figure)
drilling
 as phase of production, 530
 in USOSC, 680–681
 waste from, 538–539, 539 (figure), 542, 555, 555 (figure)
 See also drilling technology methods: specific drilling techniques
drilling barge, 227, 230 (figure)
drilling efficiency, 208–209
drilling fluids, 207–208, 208 (figure)
drilling optimization, 208–210, 209 (figure)
drilling schedule, semisubmersible projects, 619, 622, 622 (figure), 622 (table)
drilling specific energy (DSE), 209, 209 (figure)
drilling technology methods, 197–230
directional drilling
 deviation, wander, and BHA design, 223–224, 224 (figure)
directional well trajectory coordinates, 221–222, 221 (figure), 222 (figure)
measuring well trajectories, 219
overview, 215–216, 216 (figure)
planning trajectory changes, 223, 223 (figure)
shale- and mudstone-hosted oil and gas, 373
subsurface steering tools, 219–221, 220 (figure), 221 (figure)
for tight gas, 322–323, 324 (figure)
torque and drag, 224–225, 225 (figure)
well trajectory terminology, 216–217, 217 (figure), 218 (figure), 219 (figure)
well control
casing installation, 211, 213, 213 (figure)
kick detection and shut-in procedures, 213–214
managed pressure drilling, 214–215, 214 (figure),
215 (figure)
mud pressure bounds and casing schedules, 210–211,
210 (figure), 211 (figure), 212 (figure)
See also drill rig systems
drift-off tests (DOTs), 209, 209 (figure)
drive mechanisms
natural, 249, 250 (table)
petroleum migration, 125
reservoir classification based on, 4–5
dry gas, 3, 68, 68 (figure), 68 (table), 378
dry-gas well performance analysis, 411, 412–413, 413 (figure)
dry tree wells
decommissioning cost, 585, 585 (table), 586 (figure), 591
overview, 606, 607–608, 608 (figure), 609 (figure)
semisubmersible projects, 623, 624 (table)
dual-gradient drilling (DGD), 215, 215 (figure), 216 (figure)
dual-porosity systems, 11, 17
Duong decline forecasting, 367, 368–369, 368 (figure), 368 (table),
369 (figure)
dynamic parameters, geomechanical, 96, 99, 99 (figure)
dynamic simulation of pool-forming. See 3D dynamic simulation
of pool-forming
E
Eagle Ford Shale, 337, 346
ecological effects, 541–543, 555–557, 557 (figure). See also
environmental concerns
economic evaluation of trap, 132–133, 146, 146 (table)
economic models, reserve depletion estimation, 48
economically recoverable resources (ERR), 352
economics of semisubmersible developments. See semisubmersibles
economies of scale, semisubmersible projects, 628, 629 (table), 630 (figure)
effective permeability, 11, 73, 74
effective porosity, 10, 55
effective stress, 8, 89–90, 93–94
elasticity, 87–89, 88 (figure), 89 (figure), 101
electric logging, 16
electrical energy storage, 686
electrical hazards, 543
Electrical HAZOP (EHAZOP) study, 551
electrical properties, reservoir rock and fluid, 15, 59–60, 60 (figure)
electricity system modeling platforms, 50 (table), 52
electricity-generation expansion analysis system (EGEAS), 50 (table)
electromagnetic telemetry (EMT), 219
electron donors and acceptors, 462
electrostatic emulsion treaters, 235–236, 236 (figure)
electro-thermal dynamic stripping (ET-DSP), 315
electrolysis evacuation, 561–562, 563 (figure)
electrical shutdown, 562
emergency venting valves, 521
emissions
environmental concerns, 537–539, 537 (figure), 538 (figure)
gas gravity separator, 238
minimizing, 554
storage tank, 521–522, 522 (figure)
See also greenhouse gases
employee training, in health and safety management systems, 552
emulsifiers, 438, 439
emulsions, treating, 235–236, 236 (figure)
end-to-end flooding, 251, 252 (figure)
energized fracturing fluids, 362–363
energy conservation for flow, 510
energy consumption
reducing, 555
in USOSC, 679, 681
energy control techniques, 560
energy dissipation and supply, pipelines, 513, 513 (figure)
energy flow optimization model (EFOM), 49 (table)
energy future, 31–41, 693–709
deep-water oil and gas outlook, 35–36, 36 (figure)
enhanced oil recovery, 698–701, 700 (figure), 701 (figure)
fuel production and consumption, 31–35, 32 (figure),
33 (figure), 34 (figure)
geopolitics and environment, 706–708, 707 (figure)
overview, 693
technological advancements and innovation, 704–706, 704 (figure), 705 (figure)
total world energy consumption, 31 (figure)
unconventional resources
gas, 40–41, 41 (figure), 42 (table)
general discussion, 697, 697 (figure), 698 (figure), 699 (figure)
oil, 36–40, 37 (figure), 38 (figure), 38 (table), 39 (figure),
39 (table), 40 (figure), 40 (table)
upstream resources and reserves, 693–694, 694 (figure), 695 (figure), 696, 696 (figure)
well, reservoir, and facility management, 701–704, 702 (figure),
703 (figure)
energy market, global, 657, 658 (figure). See also specific energy
sources
energy studies on natural gas hydrates, 434–435
energy systems models
electricity system models, 52
examples of, 49–50 (table)
hybrid models, 51, 52 (figure)
optimization models, 50–51, 50 (figure)
overview, 48
simulation models, 51, 51 (figure)
Enform, 547
engineering studies on natural gas hydrates, 434
enhanced microbial water floods, 286
enhanced oil recovery (EOR), 249–294
energy future, 698–701, 700 (figure), 701 (figure)
foam flooding, 265–266, 265 (figure)
global status of, 294, 294 (figure)
immiscible gas displacement processes, 276
implementation of processes, 293–294, 293 (table)
low-salinity water flooding, 291–292
miscible displacement processes, 271–275, 272 (table), 273 (figure), 275 (figure), 276 (figure)
mobility-control processes, 256
overview, 255–256, 461
performance of, 256, 256 (figure)
in situ conversion processes, 292, 293 (figure), 340
in situ permeability modification processes, 266 (figure),
266–270, 267 (figure), 267 (table), 268 (table), 269 (table)
solar energy in, 688–689, 689 (figure), 690 (figure)
stages of crude oil production, 249–255, 250 (figure),
252 (figure), 253 (figure), 254 (figure)
techniques for, 468, 469 (table)
water-alternating gas process, 270–271, 270 (figure), 271 (figure)
See also chemical flooding; microbial enhanced oil recovery;
polymer flooding; thermal recovery methods
enriched-gas process, MCM, 273
Enterobacter cloacae in MEOR, 473
environmental concerns, 537–543
associations for, 547–548
atmospheric effects and emissions, 537–538, 538 (figure),
ecological effects, 541–543
and energy future, 708
fracturing fluids, 365–366
gas hydrates, 435–436
groundwater contamination, 540, 540 (figure)
hydrate control, 440
hydraulic fracturing, 388–389, 673, 675
land and soil effects, 540–541, 541 (table)
minimizing environmental impact, 553–557, 555 (figure),
oil shale retorting, 386–387
shale gas, 675
wastewater discharge, 538–540, 538 (figure), 539 (figure),
539 (table)
water consumption, 540
environmental management, 548–549, 549 (figure), 553–557, 555 (figure), 556 (table), 557 (figure)
environmental regulations, 532–537
enzymes, as breakers for fracturing fluids, 359, 360
episodic hydrocarbon expulsion model, 122–123
equation of state (EOS) for reservoir fluid, 67–69
solubility models, 490–491
Equatorial Guinea, regulatory framework in, 536–537
ergonomic hazards, 543
erosion, hydrate control and, 441
Europe
associations pertaining to oil and gas industry, 547
energy future, 706–707
regulatory framework in, 536–537
evacuation, emergency, 561–562, 563 (figure)
evaluation model, artificial neural network simulation, 127–130
event trees, 551
expanding solvent steam-assisted gravity drainage (ES-SAGD), 289, 290 (figure), 311
expansion, thermal, 90, 96
expected ultimate recoveries (EUR), semisubmersible projects, 628, 628 (figure), 629 (table), 640–641, 642 (figure), 643 (table), 644 (table), 645 (figure), 646 (figure)
explicit-scheme formulation, flow equations, 184, 185 (figure)
eval橱on
overview, 530, 652
risk involved, 616, 617 (figure)
ssemisubmersible projects, 618–619, 619 (table)
in USOSC, 680–681
explosions, 546, 557–558
exponential curve-fitting models, 46
exponential decline, 367, 367 (table), 416
export pipelines
deepwater systems, 607, 608 (figure), 611
semisubmersible projects, 623, 624 (table), 625 (figure)
exulsion history, 3D dynamic simulation of, 122–123, 122 (figure)
extended-reach drilling (ERD) wells, 217, 219 (figure)
external floating roof (EFR) tanks, 519, 520 (figure), 522
extinguishing fires, 525
extra-heavy oil
classification of, 3, 287 (table)
energy future, 37–39, 38 (figure), 38 (table)
overview, 9, 287
physical properties of, 302, 302 (table)
See also bitumen
ExxonMobil in situ retorting, 386
F
facility management, 701–704, 702 (figure), 703 (figure)
failure, in petroleum geomechanics, 92–95, 93 (figure), 94 (figure), 95 (figure)
failure mode and effects analysis, 551
falls, as workplace hazard, 543
Faraday, Michael, 432
Fast-SAGD, 311
fatalities, workplace, 544–546 (table), 553, 553 (figure).
See also safety
fault displacement, elimination and recovery of, 112–113, 112 (figure), 113 (figure)
fault evaluation submodel, artificial neural networks, 127–128
fault tree analysis, 551
faults, in 3D static geological modeling, 111–112, 111 (figure)
fermentative bacteria, 463
field development plan, for natural gas, 420–425, 421 (figure), 422 (figure), 424 (figure), 425 (figure), 425 (table)
field scale, upscaling measurements to, 101–102, 102 (figure)
field surveillance, petroleum geomechanics, 102–103
field testing, methane hydrate production, 335
filling practice, safe, 526, 526 (figure)
filtration method
asphaltene precipitation studies, 487
HPHT, 489
filtration units, removing trace oil with, 240–241
finite-difference approximation, 182–184, 183 (figure)
fire flooding. See in situ combustion
fire hazards, 546, 557–558
fire prevention and extinguishing, 525
first contact miscible (FCM), 271–273, 272 (figure), 272 (table), 273 (figure)
fission track, 121
fissure zone evaluation, 128–129
fixed platforms, 600 (figure)
decommissioning cost, 585 (table), 589–590, 590 (table), 591–593, 591–592 (table), 595, 595 (figure)
decommissioning stages, 581–582
depthwater inventory, 573, 574–575 (table), 574 (figure), 576 (figure)
fixed roofs, storage tank, 521, 521 (figure)
fracking, 557, 559, 559 (figure)
flexible piping system, storage tank, 520
flexible wiper seals, 520
flexural-slip mechanism recovery method, 113–114, 113 (figure)
flow equations, in numerical reservoir simulation
flow control, gravity separator, 237–238, 237 (figure), 238 (figure)
flow assurance, for gas production from hydrates, 438

flow
flow assurance, for gas production from hydrates, 438
flow control, gravity separator, 237–238, 237 (figure), 238 (figure)
flow equations, in numerical reservoir simulation
discretized form of, 182–185, 182 (figure), 183 (figure), 183 (figure)
umerical solution of linear systems of equations, 188–189
overview, 180
in rectangular coordinates, 180–182, 180 (figure)
flow patterns/flow regimes, 408
flow rate
calculating achievable, 412–413
pipelines, 510–511
flow test, permeability measurement through, 13
flowback of fracturing fluid, 327–328
flowing material balance (FMB) methodology, 418, 420, 420 (figure)
flowlines
decommissioning cost, 582, 585 (table), 589 (figure), 593
deepwater systems, 610
semisubmersible projects, 623
flowback, 327–328
fracture toughness, 95, 96, 98, 357
free gas, 272, 276
fluid electric properties, reservoir rock and, 59–60, 60 (figure)
fluid inclusion, 121
fluid potential, 125
fluid saturation, 14, 55–56, 181–182
fluid separation. See gravity separation
fluids
drilling, 207–208, 208 (figure)
hydraulic fracturing
breaker-free, 363, 364 (figure)
chemicals found in, 540, 540 (figure)
cleanup, 354, 359–360
composition example, 364–365, 364 (table), 365 (table)
enenergized, 362–363
environmental aspects of, 365–366
flowback, 327–328
guar, 358–360, 358 (figure), 361 (figure)
overvation, 351–352
potential for technology improvement, 390
rheological properties of, 363
slickwater, 360–361, 362 (figure)
for tight gas production, 325–328, 326 (table), 327 (table)

viscoelastic surfactant-based, 361–362, 362 (figure)
natural gas, separation of, 531
in well performance analysis, 412, 412 (figure)
See also reservoir fluids
to flooding, 265–266, 265 (figure)
to systems, as fracturing fluids, 362–363
to-assisted WAG (FAWAG) process, 271, 271 (figure)
tootage drilled, semisubmersible projects, 620–621 (figure), 622, 623 (figure)
Forchheimer's equation, 398, 400

forecasting, field production
build-up production period, 421–422, 421 (figure)
decline production period, 422–423, 422 (figure)
example of, 423–425, 424 (figure), 425 (figure), 425 (table)
plateau production period, 422
formation damage, 75
formation fluid, separation of, 530
formation pore fluid pressure, 210–211
formation volume factor, 65–66, 66 (figure)
formation water, 62, 69, 456. See also reservoir fluids
forward ISC, 314
forward-difference approximation, 183, 183 (figure)
fossil fuels
comparative analysis between renewables and, 657–660, 659 (figure), 659 (table), 660 (table)
role in world energy production, 301, 657, 658 (figure)
See also specific fossil fuels
founding, storage tank, 522
four-dimensional (4D) seismic monitoring, 703 (figure), 703–704
fracture pressure, 210–211, 211 (figure), 212 (figure)
fracture toughness, 95, 96, 98, 357
fractured reservoirs, 11, 17–18, 58, 58 (figure)
fractures
as form of failure, 94–95, 95 (figure)
polymer flooding as causing, 260–261
and stress determination in subsurface, 100 (figure), 100–101
See also hydraulic fracturing
fracturing-fluid flowback, 327–328
framework modeling, 110. See also structure-stratum framework simulation
free gas, in GHDs, 450–451
free water knockouts, 325, 236 (table)
freeze wall, 292, 293 (figure)
fraction factors, 405, 409, 410
Front Runner umbilical, flowline, and riser removal cost, 588–589
froth treatment, bitumen extraction process, 317
Fuel-to-Liquid energy future, 39–40
 fugitive emissions, 537–538, 554, 682
full-asset type curve analysis, 174, 175 (figure)
full-field models, numerical reservoir simulation, 191
fully 3D models, hydraulic fracturing, 356, 357 (table)
function-based approach, metagenomics, 465, 466–467
future economics, semisubmersible projects, 645, 647 (table)
future of energy industry. See energy future
fuzzy comprehensive evaluation of trap, 132
gamma-ray tools, 16

gas

classification, 3

conventional versus unconventional, 319, 321

drive mechanisms in, 5

original gas in place, 76–77

See also reservoirs; specific resources derived from gas reservoirs

gas shale, 8–9, 376. See also shale gas
gas-carry drive, 4–5, 250 (table)
gas-to-liquids (GTLs), 40, 40 (figure), 40 (table)
gate valves, 511, 512 (figure)
Gaussian curve-fitting models, 46
gelled foam, 266
generation history, 3D dynamic simulation of, 121–122
genomic analysis of biological assemblages, 464–467, 464 (figure)
geological evaluation of trap, 130–132, 145–146, 146 (table)
geological modeling

in reservoir characterization, 190

3D, 109–112, 110 (figure), 111 (figure)
geology, deepwater, 603, 605–606
gemechanics. See petroleum geomechanics

géophysically, 16–17, 336. See also well logging
géopolitics, and energy future, 706–708, 707 (figure)
goalpressured reservoirs, 5
goestatistical modeling, 190
goethical field evolution simulation

Dongying Sag petroleum system example, 138–140, 139 (table), 140 (table), 141 (figure)

getting simulation parameter values, 118–121, 119 (table), 120 (table)

method for simulation, 116–118, 117 (figure), 118 (figure)
goethereal profiles, locating HFZs with, 447, 448 (figure), 449 (figure)
glycol, 244–245, 438–439

grain size distribution, reservoir rock, 58–59, 59 (table)
gravimetric technique, asphaltene precipitation studies, 488, 489
grain drainage

expanding solvent steam-assisted, 289, 290 (figure), 311

natural, 5, 250 (table)
steam-assisted, 9, 289–290, 290 (figure), 309–313, 309 (figure), 310 (table), 312–313 (table), 344

thermal-assisted, 315–316

gravity separation, 233–239

air emissions, 238

emulsions, 235–236, 236 (figure)
flow control, 237–238, 237 (figure), 238 (figure)
operating pressures, 236–237, 237 (figure)
overview, 233

produced water, 238–239, 238 (table)
separator design, 233–235, 234 (figure), 234 (table), 235 (figure), 235 (table), 236 (figure)

greenhouse gases (GHGs)

environmental concerns, 537–538, 537 (figure), 538 (figure)

fossil fuels versus renewables, 658–659, 659 (figure), 659 (table)
minimizing emissions, 554

oil shale retorting emissions, 386–387

and upstream oil supply chain, 681–683, 681 (figure), 682 (table), 683 (table)
gridding, in numerical reservoir simulation, 185, 185 (figure), 192, 192 (table)
grounging techniques, 560

groundwater contamination, 540, 540 (figure), 540 (figure)
groundwater protection, 524–525, 525 (figure), 525 (figure), 525 (figure), 525 (figure), 525 (figure), 525 (figure)
guar alternatives, 363
guar-based fracturing fluids, 358–360, 358 (figure), 358 (figure), 358 (figure), 358 (figure), 358 (figure), 358 (figure)
Gulf of Mexico (GOM)

deeptrench geology, 603, 605–606, 607 (figure)
overview, 599–600. See also semisubmersibles

semisubmersible inventory, 602–603, 603 (figure), 603 (table), 604 (figuere), 605 (figure), 606 (figure)
structure types used in, 599, 600 (figure)
See also decommissioning cost estimation in deepwater GOM; semisubmersibles

H

handling of petroleum product, safe, 523–526

harmonic decline, Arps decline forecasting, 367, 367 (table)

Hazard and Operability (HAZOP) study, 550–551

hazardous toxic waste. See environmental concerns; waste; wastewater

hazards. See occupational hazards; safety

health

associations for, 547–548

concerns and issues, 543, 544–546 (table), 546–547

management systems, 549–553, 550 (figure), 551 (figure), 552 (figure), 553 (figure)

minimizing hazards, 557–562, 558 (figure), 559 (figure), 560 (figure), 561 (figure), 562 (figure), 563 (figure), 564 (figure)

regulations, 532–537
heat flow, in geothermal field evolution simulation
 calculating value of, 118–120, 119 (table), 120 (table)
status of, 116–117
heat requirements, emulsion treater, 236
heavy oil, 302–316
classification of, 3, 287 (table)
overview, 9, 287
physical properties of, 302–303, 302 (table)
worldwide distribution of, 303–304, 303 (figure), 304 (figure)
See also thermal recovery methods
Herschel–Buckley (HB) rheological behaviors, 363
heterogeneous reservoirs, 11, 16, 17–18
high-performance liquid chromatography (HPLC), 485
high-pressure air injection (HPIA), 314
high-pressure gas drive, MCM, 273
high-pressure high-temperature (HPHT) conditions, asphaltene precipitation in, 488–489
high-pressure microscopy (HPM), 489
high-temperature high-pressure (HTHP) drilling fluids, 207–208
historic economic evaluations, semisubmersible projects, 645, 647
high-temperature high-pressure (HTHP) drilling fluids
 See also CO2 flooding, 275
 cyclic steam stimulation using, 288, 288 (figure)
in FCM, 272–273, 273 (figure)
overview, 217, 218 (figure)
production of shale oil and tight oil, 336
shale- and mudstone-hosted oil and gas, 373, 374, 387
for tight gas, 322–323, 324 (figure)
for water flooding, 253, 254 (figure)
See also hydraulic fracturing
horizontal permeability, 10–11, 14
horsepower per square inch (HSI), 210
hot tanks, 522
Houpeurt analysis, 400, 402–403, 402 (figure), 403 (figure), 403 (table)
Hubbert’s logistic model, 46
“Huff and Puff” MEOR, 286. See also cyclic steam stimulation
hull, floating platforms, 577, 578 (figure), 582, 591, 601, 601 (figure)
hurricane risk, semisubmersible projects, 618
hybrid energy systems modeling platforms, 49–50 (table), 51, 52 (figure)
hybrid PV-diesel systems, 687
hybrid steam–solvent processes, 316, 317 (figure)
hydrate formation zones (HFZs), 446–447, 448 (figure), 449 (figure).
See also natural gas hydrates
hydrated gas. See gas hydrate deposits; natural gas hydrates
hydrodynamic retention, polymer, 260 (table)
hydrodynamic retention, polymer, 260 (table)
hydrodynamic retention, polymer, 260 (table)
hydrofracturing (hydrofracturing/fracking), 351–369
of CBM reservoirs, 331
decline curve analysis, 366–369, 367 (table), 368 (figure), 368 (table), 369 (figure)
deferred, 672
of CBM reservoirs
 See numerical reservoir simulation; reservoir fluids; reservoir rock; reservoirs
hydrocarbon resources.
 See also specific hydrocarbon resources
hydrocarbon source rock. See reservoir rock; shale- and mudstone-hosted oil and gas; source rock
hydrocarbon transmission ratio, 129–130
hydrocycloclones, removing trace oil with, 239
hydrodynamic weighing, 13
viscous, 363, 364 (figure)
chemicals found in, 540, 540 (figure)
viscous, 363, 364 (figure)
chemicals found in, 540, 540 (figure)
hyperbolic decline, 367, 367 (table), 416–417
hysteresis
 capillary, 70–71, 71 (figure)
 contact angle, 69, 69 (figure)
 relative permeability, 73
I
Iatroscan method, SARA analysis, 485, 486
ideal gas law, 62–63
ignition sources, 525, 557
immiscible gas displacement processes, 276
implicit-pressure, explicit-saturation (IMPES) formulation, flow equations, 184–185
implicit-scheme formulation, flow equations, 184, 185 (figure)
improved oil recovery (IOR) processes, 255
in situ combustion (ISC), 290–291, 291 (table), 292 (figure), 313–315, 314 (figure), 315 (figure)
in situ conversion processes (ICPs), 292, 293 (figure), 340
in situ deformation monitoring, 102
in situ permeability modification processes, 266–270, 266 (figure), 267 (figure), 267 (table), 268 (table), 269 (table)
in situ reactive gel system, 266–267
in situ retorting, 384–386, 385 (figure)
in situ stress, 87, 99–101
in-capsule retorting, 386
incident indicators, 552, 552 (figure)
incident management, 552
incidents, major, 544–546 (table), 561–562, 563 (figure)
inclination, well trajectory, 216
incremental oil recovery factor, 256, 256 (figure)
Independence project, 653–654. See also semisubmersibles
indirect deformation monitoring, 102
indirect method, asphaltene precipitation studies, 488
induction tools, 16
inelasticity, 91–92, 91 (figure), 92 (figure)
inference rules, artificial neural networks, 126
infinitesimal deformations, 84
inflow performance analysis, gas reservoirs, 398–404, 401 (table), 402 (figure), 403 (figure), 403 (table), 404 (figure)
inflow performance relationships (IPRs)
 deliverability and inflow analysis, 399–404, 401 (table), 402 (figure), 403 (figure), 403 (table)
 well performance analysis, 411–414, 411 (figure)
infrared (IR), SARA analysis with, 485
inherently safe design, 561, 561 (figure), 562 (figure)
initial conditions, numerical reservoir simulation, 187, 187 (figure), 192
initial production rates, semisubmersible projects, 630, 635 (table), 636 (figure)
injection processes. See specific flooding processes
injection wells, 251
injuries. See safety inspections, worksite, 552
instrument air systems, solar-powered, 689–690
integrated oil sands mining operations. See oil sands mining interaction matrix, 551
interfacial tension (IFT)
 solubilization ratio and, 280
 surfactant phase behavior and, 278–281, 280 (figure)
tergranular-icrystalline porosity systems, 6
internal floating roof (IFR) tanks, 519, 520 (figure), 522
internal-gas drive, 4, 4 (figure)
International Association of Drilling Contractors (IADC) bit classification system, 206, 206 (figure), 207 (figure)
international associations for health, safety, and environment, 547–548
International Energy Agency (IEA), 547
International Organization for Standardization (ISO), 549, 553
International Petroleum Industry Environmental Conservation Association (IPIECA), 547
interporosity flow coefficient, 11, 17
interstice, reservoirs, 9–10
investment risk matrix, 617–618, 618 (figure)
ionic surfactants, 278 (table), 282
islands, artificial, 225, 226 (figure), 227 (figure)
isoenthalpia compressibility, 60–61, 62, 66
isothermal pressure versus specific volume (p-V) diagram, 67, 67 (figure)
isotherms, capillary pressure by, 78 (figure), 78–79
isotropic elasticity, 87, 88
iterative solution methods, numerical reservoir simulation, 188–189, 188 (figure)
J
Jack project, 655. See also semisubmersibles
jacket removal, 582
jackups, 225–226, 228 (figure)
J-function (JF), Leverett, 70, 71 (figure)
Johnson-Bossler-Naumann (JBN) method, 75
J-shaped well configuration, SAGD, 311
K
kelly pipes, 199–200
Kelvin’s equation, 78
kerogen, 337–341
 commercial development, 341
 composition of, 338–339, 338 (table), 339 (figure)
 defined, 375
general discussion, 346
 operational challenges, 340–341
 overview, 302, 337–338
 production processes, 339 (figure), 339–340
 resource estimate, 339
See also oil shale; shale oil
Kerrobert Pilot, THAI process, 315
Kristianovic, Geertsma, and de Klerk (KGD) model, 355, 355 (figure), 357 (table)
kick detection, 213–214
kill line, BOP stack, 205
kinetic hydrate inhibitors (KHI), 437–438, 439
kinetics of asphaltene precipitation, 490
Klinkenberg effect, 8, 13–14, 57, 57 (figure)
K L
labeling, safety, 560
laboratory studies
 core sample electric properties, 60, 60 (figure)
 microbial enhanced oil recovery, 470–473
 relative permeability, 74–75, 74 (figure)
biopolymers and biofilms, 470
biosurfactants, 286, 287, 469–470
cyclic, 286
ergy future, 706
enhanced water flooding, 286
field trials, 473–475
fundamentals and mechanisms, 468–470, 469 (table)
laboratory studies, 470–473
microbial gases, solvents, and acids, 470
organic oil recovery, 286–287
overview, 286–287, 468
microbiology of petroleum reservoirs, 461–475
culture-dependent study techniques, 463–464
future perspectives, 475
metagenomics, 464 (figure), 464–467
overview, 461–463, 463 (table)
problems associated with studying, 467–468
See also microbial enhanced oil recovery
microemulsion phase behavior, 278–280, 279 (figure), 281
microemulsion polymer flooding systems, 284 (table)
microemulsion viscosity, 281, 284 (table)
microfluidic channel experiments, 495
microgels, 267, 268
micropores, coal, 7–8
microscopic sweep efficiency, 276 (figure), 277
microscopy, in asphaltene precipitation studies, 487, 489
microseismic monitoring, 373, 388
microsymmetry, in asphaltene precipitation studies, 487, 489
microscopic sweep efficiency, 276 (figure), 277
microscopy, in asphaltene precipitation studies, 487, 489
microseismic monitoring, 373, 388
microspheres, 267–268
Middle East
energy future, 706–707
EOR technique implementation in, 699–700
oil production, 661, 662, 662 (figure), 663, 663 (figure), 664 (figure)
midstream oil production processes, 679
migration history. See hydrocarbon migration and accumulation history simulation
mineralogy of shale and mudstone, 376–377, 376–377 (figure)
minimum miscibility enrichment (MME), 275, 276 (figure)
minimum miscibility pressure (MMP), 275, 275 (figure), 276 (figure)
mini-tension leg platforms (MTLPs), 578, 579–580 (table), 580
(mini-tension leg platforms (MTLPs), 578, 579–580 (table), 580 (figure), 590–591, 590 (table), 600 (figure)
Miocene trend, 605, 607 (figure)
miscible gas injection processes, 271–275
carbon dioxide flooding, 274–275
first contact miscible, 271–273, 272 (figure), 273 (figure)
minimum miscibility enrichment, 275, 275 (figure)
minimum miscibility pressure, 275, 275 (figure), 276 (figure)
multiple contact miscible, 273–274
overview, 271, 271 (table)
WAG process, 270
miscible injectant stimulation (MIST), lateral, 272–273, 273 (figure)
Mississippian Limestone Play (MLP), 368–369
mitigation strategies, asphaltene deposition, 498–499
mixed porosity system reservoirs, 6
mobile offshore drilling units (MODUs)
floating, 226–228, 229 (figure), 230, 230 (figure)
overview, 225
semisubmersible, 227, 230 (figure)
submersible, 225, 227 (figure), 228 (figure)
mobile offshore production units (MOPUs), 578, 579 (figure), 601.
See also floating systems; semisubmersibles
mobile oil zone (MOZ), THAI process, 314, 314 (figure), 315
mobility ratio, 257–258
mobility-control processes, in EOR, 256, 265–266. See also polymer flooding
mobility-induced viscous fingering, 258, 258 (figure)
model for analysis of energy demand (MAED), 49 (table)
model for energy supply strategy alternatives and their general environmental impacts (MESSAGE), 49 (table)
model for optimization of dynamic energy systems with time-dependent components and boundary conditions (MODEST), 49 (table)
modeling, reservoir, 18. See also specific modeling types
modular energy system analysis and planning (MESAP), 49 (table)
Mohr circle diagram, 86–87, 87 (figure), 93, 93 (figure)
Mohr–Coulomb failure criterion, 93–94, 93 (figure), 94 (figure)
moisture control, gas hydrates, 437
molecular weight (MW)
asphaltene, 484–485
crude oil, 65
gas, 63
polymer, 260, 264 (table), 269 (table)
monitoring, in environmental management, 548–549. See also specific monitoring types
monitoring system, drill rig, 205
monoborate, 359
monobore well technology, 213
monoethylene glycol (MEG), 438–439
mooring systems, floating platforms
decommissioning cost, 590–591, 593
overview, 577, 578 (figure), 601–602, 601 (figure)
removing, 582
Morpeth MTLP, 591
morphology of hydrate crystals, 444, 444–445 (figure)
mud circulation system, drill rig, 201–202, 202 (table), 204 (figure)
mud pressure bounds, 210–211, 210 (figure), 211 (figure), 212 (figure)
mud–pulse-telemetry (MPT), 219
mudrock, 375
muds, drilling, 530, 538–539, 555, 555 (figure)
mudstone
mineralogy of, 376–377 (figure), 376–377 (figure)
oil and gas production from, 387–389
overview, 375
See also shale- and mudstone-hosted oil and gas
multicycle curve-fitting models, 46
Multidrain SAGD, 311
multiphase flow
hydrate control and, 441
well performance analysis, 412
wellbore and outflow performance analysis, 408–411
multiphase problems, numerical reservoir simulation, 187
multiple contact miscible (MCM), 271, 272 (table), 273–274
multiple linear regression, 171, 171 (figure)
multiproduct pipelines, 513, 513 (figure)
multiscale geothermal field, dynamic simulation of, 117–118, 118 (figure)
multiscale modeling, 111, 111 (figure)
multistage hydraulic fracturing, 388
multistage triaxial compression test, 97

N
Na Kika project, 653. See also semisubmersibles
nanoparticle-modified VES systems, 362, 362 (figure)
nanoscale aspects of hydrates, 441, 442 (figure)
naphthenes, 65
naphthenic acids, 317
national energy modeling system (NEMS), 49 (table)
natural bitumen. See bitumen
natural gas
 compression, 242–244, 243 (figure), 244 (figure)
 consumption, 26 (figure), 29–31, 29 (figure), 30 (figure),
 30 (table), 669, 671 (figure)
 data reliability, 41–43
 deepwater, 35–36, 36 (figure)
 dehydration, 244–245, 244 (figure), 610–611
 depletion estimation, 45–48
 energy future, 33–34, 33 (figure), 34 (figure)
 generation from source rocks, 377–378, 378 (figure),
 379 (figure), 380 (figure)
 gravity separator emissions, 238
 history of, 529
 liquefied, 666, 669–671, 671 (table)
 major producers of, 529
 overview, 21, 26–27
 phase behavior, 66–67, 67 (figure)
 pipelines for, 513–514
 price of, 667, 668 (figure), 671
 production history, 666–669, 668 (figure)
 production process overview, 529–531, 530 (figure)
 production rates, 26 (figure), 29–31, 29 (figure), 30 (figure),
 30 (table), 669, 669 (figure), 670 (figure)
 refining, 531
 reserves
 contemporary, 669, 669 (figure), 670 (figure)
 energy future, 694, 696, 696 (figure)
 estimation methods, 43–45
 general discussion, 27–29
 historical data, 27 (figure), 28 (figure)
 overview, 26 (figure)
 top ten countries, 27 (table)
 reserve-to-production ratio, 26 (figure), 28–29
 as reservoir fluid, 62–63, 62 (table), 63 (figure)
 role in world energy market, 657, 658 (figure)
 semisubmersible production of, 628, 631 (table),
 632 (figure)
 storage, 523, 523 (figure)
 in USOSC, 680
 See also natural gas production engineering; reservoir fluids;
 specific production techniques; specific unconventional
 resources; unconventional hydrocarbon resources
natural gas from coal. See coalbed methane
 commercial production, 452–454, 453 (figure), 454–456
 (figure), 456–458, 457 (figure)
 composition of, 442–443
 decomposition of, results of studying, 451 (table), 451–452
 deposits of, 429, 430 (figure)
 dissociation conditions, 432 (figure)
 dissociation prediction, 431 (figure)
 formation of
 conditions for, 241, 242 (figure)
 and location of deposits, 447–448, 448 (figure)
 overview, 442, 442 (figure), 443 (figure)
 properties of hydrate, 445–446
 results of studying, 451–452, 451 (table)
 history of research on, 431–435
hydrate control, 436–442, 438 (figure), 439 (figure),
 440 (figure), 441 (figure), 442 (figure)
 location of deposits, 447–451, 450 (figure)
 morphology of hydrate crystals, 444, 444–455 (figure)
 overview, 9, 241–242, 429–430, 442
 phase diagram, 431 (figure)
 preventing formation of, 241–242, 242 (figure), 242 (table)
 properties of, 445–446, 445 (figure)
 and regional ecology and global changes, 435–436
 removal of, 439–440
 thermal properties, 446
 zone of formation, 446–447, 448 (figure), 449 (figure)
 See also methane hydrates
natural gas production engineering, 395–425
 field development and performance prediction, 420–425, 421
 (figure), 422 (figure), 424 (figure), 425 (figure), 425 (table)
 overview, 397 (figure), 397–398
 reserves assessment, 415–420, 416 (figure), 419 (figure), 420
 (figure)
 reservoir deliverability and inflow performance analysis,
 398–404, 401 (table), 402 (figure), 403 (figure), 403 (table),
 404 (figure)
 well and system performance analysis, 411–414, 411 (figure),
 412 (figure), 413 (figure), 413 (table), 414 (figure), 414
 (table)
 wellbore and outflow performance analysis, 404–411,
 409 (table)
 naturally fractured reservoirs, 11, 17–18, 58, 58 (figure)
 naturally occurring radioactive material (NORM), 238–239,
 560, 560 (figure)
 near-infrared (NIR), 485, 487, 489
 negative salinity gradient, 283
 Neumann-type boundary condition, 186, 186 (figure)
 neural networks. See artificial neural networks
 neutron radiation, 16
 Newtonian fracturing fluids, planar-3D model for, 356–358
 Newtonian liquids, 208, 208 (figure)
 Newton's Law, 233, 234
 Nigeria, regulatory framework in, 536
 nitrate reducers, 463
 nitrogen (N)
 enhancing recovery of CBM with injection, 8
 in FCM, 272
 in immiscible gas flooding, 276
 in MCM, 274
 nitrogen foam, 363
 Niuzhuang–Wangjiagang region. See Dongying Sag petroleum
 system simulation
 NODAL Analysis™, gas well, 411–414, 411 (figure), 412 (figure),
 413 (figure), 413 (table), 414 (figure), 414 (table)
 noise hazards, 546
 nonfossil fuels, 33, 34–35, 34 (figure). See also renewable energy
 sources
 nonionic surfactants, 278 (table), 282
 non-Newtonian liquids, 208, 208 (figure)
 nonrenewable energy sources, 657–660. See also specific energy
 sources
 nonwetting phase, defined, 69
 nonwetting phase trapping, 71, 71 (figure)
 normal geothermal field, 116
 normal strain, 84–85, 85 (figure)
 normal-compaction section submodel of thermal evolution, 117
Index

North America
- associations pertaining to oil and gas industry, 547
- energy future, 706–707
- major incidents in, 544–546 (table)
- regulatory framework in, 532–533
- N-SOLV technology, 316, 345
- nuclear magnetic resonance (NMR) method, 488
- nuclear power, 35
- nucleation, natural gas hydrates, 445
- nucleic acids extraction, 465–466
- numerical reservoir simulation, 177–195
 - discretized form of flow equations, 182–185, 182 (figure), 183 (figure), 185 (figure)
 - documentation, 193–194
 - flow equations in rectangular coordinates, 180–182, 180 (figure)
 - formulations, 180
 - fundamentals of, 180
 - general discussion, 194–195
 - gridding, boundary types, and conditions, 185–187, 185 (figure), 186 (figure), 187 (figure)
 - model selection and construction, 190–192, 191 (figure), 192 (table)
 - numerical solution of linear systems of equations, 188–189, 188 (figure), 189 (figure), 189 (table)
 - overview, 177–180, 178 (figure)
 - predictions, 193, 194 (figure)
 - properties required to construct, 178, 179 (table)
 - reservoir characterization, 190
 - statement and prioritization of objectives, 189–190
 - validation, 192–193, 192 (table), 193 (figure), 194 (figure)

- oblique shearing mechanism, 114, 114 (figure)

- occupational hazards
 - health and safety management systems, 549–553, 550 (figure), 551 (figure), 552 (figure), 553 (figure)
 - minimizing, 557–562, 558 (figure), 559 (figure), 560 (figure), 561 (figure), 562 (figure), 563 (figure)
 - overview, 543, 546–547

- Occupational Health and Safety Advisory Services (OHSAS), 553
- off-bottom test (OBT), 224
- Offset SAGD, 312
- offshore conditions, gas hydrate formation in, 449 (figure)
- offshore drilling
 - bottom-founded systems, 225–226, 226 (figure), 227 (figure), 228 (figure), 229 (figure)
 - floating systems, 226–228, 229 (figure), 230, 230 (figure)
 - overview, 225
- offshore pipelines, 514, 514 (figure)
- offshore reservoirs, deepwater, 302, 341–342, 341 (figure), 342 (table), 343 (figure), 344 (figure), 346–347
- oil
 - consumption, 22 (figure), 24–26, 25 (figure), 26 (table), 666, 667 (figure)
 - data reliability, 41–43
 - deepwater, 35–36, 36 (figure), 343–344
 - depletion estimation, 45–48
 - generation from source rocks, 377–378, 378 (figure)
 - in Messoyakha gas hydrate deposit, 456, 457 (figure)

- overview, 461–462
- price of, 661, 662, 663, 663 (figure), 693, 694 (figure)
- production
 - contemporary, 664–666, 666 (figure)
 - historical data, 25 (figure)
 - history of, 660–664, 662 (figure), 663 (figure), 664 (figure)
 - overview, 22 (figure), 24–26
- top ten countries, 26 (table)
- prospective outlook on, 21
- relative permeability, 73
- reserves
 - contemporary, 664–666, 665 (figure)
 - energy future, 693–694, 695 (figure), 696
 - estimation methods, 43–45
 - historical data, 23 (figure), 24 (figure)
 - overview, 21–24, 22 (figure)
- top ten countries, 23 (table)
- reserve-to-production ratio, 22, 22 (figure), 23, 24 (figure), 695 (figure)
- as reservoir fluid, 64 (table), 65–66, 66 (figure)
- reservoir rock wettability, 71–72, 71 (figure)
- role in world energy market, 657, 658 (figure)
- semisubmersible production of, 628, 631 (table), 632 (figure)
- trace, removal from wastewater, 239–241, 240 (figure)

- See also energy future; microbiology of petroleum reservoirs; petroleum geomechanics; reservoir fluids; specific entries under "hydrocarbon"; specific oil types; unconventional hydrocarbon resources; upstream oil supply chain

- oil field data mining
 - artificial neural networks, 149–152, 150 (figure), 151 (figure)
- production optimization
 - data availability and statistical analysis, 168–170, 169 (table), 170 (table)
 - data-driven modeling, 170–173, 171 (figure), 172 (figure)
 - full-asset type curve analysis, 174, 175 (figure)
 - single-well, single-parameter sensitivity analysis, 173, 173 (figure)
 - single-well, type curve analysis, 173, 174 (figure)
 - single-well uncertainty analysis, 174–175, 175 (figure)
- reservoir characterization
 - overview, 152–153, 152 (figure)
 - seismic survey, 154
 - seismic to well logs, 153–154, 153 (figure)
 - synthetic model, 154–161, 155 (figure), 155 (table), 156 (figure), 157 (figure), 158 (figure), 159 (figure), 159–161 (figure), 161 (table)
 - Valley Field case study, 161–164, 162 (figure), 163 (figure), 164 (table), 165–168 (figure), 165 (table)

- oil recovery factor
 - incremental, 256, 256 (figure)
- secondary oil recovery, 255
- oil reservoirs, 3, 4
- See also microbiology of petroleum reservoirs; reservoirs

- oil sands mining
 - bitumen extraction, 317
 - bitumen upgrading, 318–319, 320 (figure), 320 (table)
 - challenges of, 319, 320 (figure)
 - energy future, 37–38, 38 (figure)
 - environmental concerns, 537
 - general discussion, 345–346
 - oil sand tailings, 317–318, 318 (figure), 318 (table), 319 (table)
 - overview, 302, 316–317
See also

optimization, drilling, 208–210, 209 (figure).

optimal renewable energy model (OREM), 49 (table)

optimal depletion theory, 48

operator liability, decommissioning, 597

operating pressures

gravity separator, 236–237, 237 (figure)
topsides facilities, 610, 612 (table)
operator liability, decommissioning, 597

optimal depletion theory, 48

optimal renewable energy model (OREM), 49 (table)

optimization, drilling, 208–210, 209 (figure). See also production optimization, data mining for optimization energy systems modeling platforms, 49 (table), 50–51, 50 (figure)

optimum offtake pattern, 425

optimum salinity concentration, 280–281

Ordovician period, 378, 379 (figure)

organic oil recovery, 286–287

Organization for Economic Co-operation and Development (OECD) countries

natural gas consumption, 29, 29 (figure), 33, 33 (figure), 34 (figure)
natural gas production, 30 (figure)
natural gas reserves, 27–28, 27 (figure)
nonfossil fuels in, 35

oil consumption, 25 (figure)

oil production, 25 (figure)

oil reserves, 23 (figure)

projected energy consumption, 31, 31 (figure), 32 (figure)

share of consumption for fuel types, 34 (figure)

Organization of Petroleum Exporting Countries (OPEC)

oil production, 25 (figure), 661, 662

oil reserves, 22–23, 23 (figure)

projections of liquid fuel production, 32, 32 (figure)
orifice meters, 246, 246 (figure)

original-gas-in-place (OGIP), assessment of, 76–77, 415, 416, 416 (figure), 418, 419–420, 419 (figure), 420 (figure)

outflow performance

well performance analysis, 411–414, 411 (figure)

wellbore performance analysis, 404–411, 409 (table)

overbalanced drilling fluids, 207–208, 208 (figure)

overcompaction section submodel of thermal evolution, 117

overtraining, neural network, 151

ownership, semisubmersible projects, 644

oxidizers, as breakers for fracturing fluids, 359, 360

P

p₂-approach

deliverability and inflow analysis, 398–399, 400, 402, 402 (figure)
gas well performance analysis, 414

paraffin wax control, 441

parallel plate coalescer, removing trace oil with, 239–240, 240 (figure)

passive solar energy, 684

pattern flooding, 251, 252 (figure), 253, 253 (figure)
PDC bits, 205, 206, 206 (figure)

peak production to reserves ratio, semisubmersible projects, 631, 635, 637 (table)

pendulum force, 224, 224 (figure)
Peng-Robinson (PR) EOS, 67

perceptrons, 149

performance forecasting, gas field

build-up production period, 421 (figure), 421–422
decline production period, 422 (figure), 422–423

example of, 423–425, 424 (figure), 425 (figure), 425 (table)

plateau production period, 422

performance indicators, environmental, 548

peripheral flooding, 251, 252 (figure)

Perkins, Kern, and Nordgren (PKN) model, 355, 355 (figure), 357 (table)

permafrost areas, gas hydrate deposits in, 447–448, 450–451, 450 (figure)

permeability

absolute, 11, 13–14

CBM reservoirs, 8, 330–331
core analysis, 13–14
directional, 6, 10
effective, 11, 73, 74
fracture, 58

grain size and pore size distributions, 58–59

horizontal, 10–11, 14

in situ permeability modification processes, 266–270, 266 (figure), 267 (figure), 267 (table), 268 (table), 269 (table)

liquid, 56–57

maximum, 14

reservoir, polymer flooding as reducing, 259–260

reservoir rock, 2, 10–11, 56–57, 56 (figure), 57 (figure), 58 (figure)

unconventional reservoirs, 77–78, 78 (figure)

vertical, 10–11, 14

See also relative permeability
perturbed chain form of the statistical associating fluid theory (PC-SAFT) equation of state, 491, 492, 492 (figure)

petrographic classification of kerogen constituents, 338 (table)

petroleum accumulations
medium, 29–31, 30 (figure)

small, 29–31, 30 (figure)

petroleum expulsion

plugs, 10, 15–16, 19 (figure)

petroleum geomechanics, 83–103

characterization, 95–102

definition, 95–102

deformation and strain, 83–85, 84 (figure), 85 (figure)

effective, 11, 13–14

elasticity, 87–89, 88 (figure), 89 (figure)

failure, 92–95, 93 (figure), 94 (figure), 95 (figure)

in situ permeability modification processes, 266–270, 266 (figure), 267 (figure), 267 (table), 268 (table), 269 (table)

liquid, 56–57

maximum, 14

petroleum generation

petroleum generation history

petroleum in situ permeability

petroleum accumulation

petroleum accumulation history

petroleum generation

petroleum geomechanics, 83–103

application considerations, 101–102, 101 (figure), 102 (figure)

basic parameters for continuous materials, 95–96

caracterization, 95–102

definition, 95–102

definition and strain, 83–85, 84 (figure), 85 (figure)

effect, 87–89, 88 (figure), 89 (figure)

failure, 92–95, 93 (figure), 94 (figure), 95 (figure)

in situ permeability modification processes, 266–270, 266 (figure), 267 (figure), 267 (table), 268 (table), 269 (table)

liquid, 56–57

maximum, 14

sources for geomechanical parameters, 96–101, 96 (figure), 97 (figure), 98 (figure), 99 (figure), 100 (figure)

stress, 85–87, 86 (figure), 87 (figure)

surveillance, 102–103

thermal effects, 90–91
petroleum migration history. See hydrocarbon migration and accumulation history simulation
petroleum pipelines. See pipelines petroleum reservoirs. See microbiology of petroleum reservoirs; reservoirs petroleum system simulation. See 3D dynamic simulation of pool-forming petroleum transmission ratio, 129–130 Petronius compliant tower, 576 (figure) phase behavior
numerical reservoir simulation, 181–182 reservoir fluids, 66–69, 67 (figure), 68 (figure), 68 (table) surfactant, 278–281, 279 (figure), 280 (figure) phase diagrams, for reservoir fluid, 2–4, 3 (figure) phase judgment submodel of petroleum migration, 124–125 phase states of gas-water systems, 430, 431 (figure) phase trapping, surfactant, 283 photovoltaic (PV) solar energy, 684, 684 (figure), 685 (figure), 686 physical state of fluids, reservoir classification based on, 2–4, 3 (figure) physical treatment, wastewater, 556 (table) pipe rams, 204–205, 205 (figure) pipelines, 509–516 asphaltene deposition in, 492–493, 495–496, 496 (figure) basic conceptions about pipe flow, 510, 510 (figure) classification, 509–516, 510 (table) construction, 515, 515 (figure) corrosion prevention, 523–524, 524 (figure) cost of, 515–516 crude oil and refined product, 513, 513 (figure) decommissioning cost, 585 (table), 587–588, 588 (table), 592–593 decommissioning stages, 581–582 export, 607, 608 (figure), 611, 623, 624 (table), 625 (figure) filling and discharging practice, 526, 526 (figure) fire and explosion hazards, 546 fire prevention and extinguishing, 525 general design, 510–511, 511 (figure) groundwater protection, 524–525, 525 (figure) history of, 507, 508 (figure) issues with, 666 leak detection, 524 maintenance and repairs, 525–526, 525 (figure) major components, 511, 512 (figure) natural gas and LPG, 513–514 offshore, 514, 514 (figure) operations, 512–513, 513 (figure) SCADA and pipeline control system, 514, 515 (figure) in USOSC, 680 in world, 516 piping, analysis of, 404–411 planar 3D models (PL3D), hydraulic fracturing, 356–358, 357 (table) plastic viscosity (PV), drilling fluids, 208, 208 (figure) plasticity, 91–92, 91 (figure), 92 (figure) plateau production period, gas field, 421 (figure), 422, 423–424 platform deformation, monitoring, 102 plug analysis, 12, 13, 16 plugging microbial, 470, 472 well, 581, 585–586, 585 (table), 586 (figure), 591, 593 plugs, gas hydrate, 439 (figure), 439–441, 440 (figure) point-distributed gridding, in numerical reservoir simulation, 185, 185 (figure) point-the-bit RSS, 220, 221 (figure) Poiseuille’s equation, 59 Poisson’s ratio, 88, 88 (figure), 95, 99, 99 (figure) pollution. See environmental concerns polyborate, 359 polymer flooding, 256–265 ASP flooding, 285–286 design of, 262–263 field applications, 263–265 flow of polymers through porous media, 258, 259 (figure) general screening guidelines, 261–262, 262 (table), 263 (table) mechanisms of oil recovery by, 258–260, 259 (figure), 260 (table) overview, 256 polymer stability, 260–261, 261 (table), 264 (table) recent trends, 263, 264 (table) reservoir conformance and volumetric sweep efficiency, 256–258, 257 (figure), 257 (table), 258 (figure) surfactant flooding and, 281 polymer gels, for conformance control, 266 (figure), 266–270, 267 (figure), 267 (table), 268 (table), 269 (figure) polymer retention, 259–260, 260 (table) polymerase chain reaction (PCR), 465 polymer-enhanced foams, 266 polymetric fracturing fluids, 351 Pompano platform, 573, 591 pool-forming simulation. See 3D dynamic simulation of pool-forming popping and swelling microgels, 267 pore collapse, 91, 94 pore compressibility, 61, 61 (figure) pore pressure, 89, 90, 210–211, 211 (figure), 212 (figure) pore size distribution, reservoir rock, 58–59, 59 (figure) pore space, reservoirs, 9–10 pore systems, 6, 89 pore volume compressibility, 97–98 poroelasticity, 89–90, 95 porosity absolute, 10, 55 in CRM reservoirs, 8 core analysis, 13 defined, 89 deformation parameters, 95 dual-porosity systems, 11, 17 effective, 10, 55 fracture, 58 grain size and pore size distributions, 58–59 primary, 11, 55 reservoir rock, 2, 10, 55, 56 (figure) secondary, 6, 11, 55 storage, 6 total or absolute, 10 porosity-depth curve model, 115–116, 115 (figure) porous media asphaltene deposition in, 493–495, 496–497 flow of polymers through, 258, 259 (figure) foam flooding, 265–266 gas hydrate formation in, 442, 443 (figure) positive displacement mud motor (PDMM), 200–201, 203 (figure) power swivel rotary systems, 200, 203 (figure) power system, drill rig, 198 precipitation polymer, 260 (table) surfactant, 281 See also asphaltene precipitation
prediction stage, numerical reservoir simulation, 193, 194 (figure)
present value curves, semisubmersible projects, 645, 647 (figure)
pressure
bottomhole, 406–407, 417
bubble-point, 3, 66–67, 67 (figure)
constant bottomhole, 214, 215 (figure)
in deliverability and inflow analysis, 398–404
dew-point, 3, 66–67, 67 (figure)
formation pore fluid, 210–211
fracture, 210–211, 211 (figure), 212 (figure)
maximum operation, 510–511, 510 (figure)
minimum miscibility, 275, 275 (figure), 276 (figure)
operating, 236–237, 237 (figure), 610, 612 (table)
pipe flow basics, 510, 510 (figure)
pore, 89, 90, 210–211, 211 (figure), 212 (figure)
reservoir fluid phase behavior, 66–67, 67 (figure)
reservoir fluid phase diagram, 2–4, 3 (figure)
saturation, 3
subsurface, 1
vapor, 509
well performance analysis, 411
well bore, 210–211, 210 (figure), 211 (figure), 212 (figure)
well bore and outflow performance analysis, 404–411
See also capillary pressure
pressure control, gas hydrates, 437, 439–440
pressure coring, 12
pressure transient testing (well testing), 12, 17
pressure vacuum vent valve, 521, 521 (figure)
pressure versus temperature (p–T) diagram, 67, 67 (figure)
pressure-matching process, 192, 193 (figure)
pressure-transient analysis (PTA), 417
pressurized mud cap drilling (PMCD), 214–215, 215 (figure)
price variation risk, semisubmersible project, 618
Priestley, Joseph, 433 (figure), 433–434
primary porosity, 11, 55
primary production facilities, 233–247
changing conditions, 247
dehydration, 244–245, 245 (figure), 245 (table)
gas compression, 242–244, 243 (figure), 244 (figure)
hydraulic fracturing water, 241
meters, 246–247, 246 (figure)
natural gas hydrates, 241–242, 242 (figure), 242 (table)
solids separation, 241, 241 (figure)
trace oil removal from wastewater, 239–241, 240 (figure)
See also gravity separation
primary recovery, 249, 250 (figure), 461, 530, 699, 700 (figure)
principal component analysis (PCA), 485
process controls, 559–560
process heating and cooling, topsides facilities, 610
processing
environmental concerns related to, 537
offshore, 606, 608 (figure), 610
processing plants, 540, 559, 559 (figure)
produced water
CBM development, 331–332
characteristics and compositions of, 539 (table)
defined, 538
environmental concerns, 538, 538 (figure), 539 (table)
groundwater separation, 238–239, 238 (table)
hydraulic fracturing, 328, 366, 366 (table)
Messoyakha gas hydrate deposit, 456
polymer flooding, 263, 264 (table)
recycle and reuse of, 554–555
topsides facilities, 611
producing wells, semisubmersible projects, 629, 634 (figure)
product tankers, 517–518, 517 (figure), 517 (table)
production
crude oil, stages of, 249–255, 250 (figure), 252 (figure),
253 (figure), 254 (figure)
decline analysis, 416–417
deeperwater oil and gas, 35–36, 36 (figure)
ergy future, 31–35, 31 (figure), 32 (figure), 33 (figure),
34 (figure)
life-cycle stages, 652
Messoyakha gas hydrate deposit history, 453–454, 454 (figure)
natural gas
contemporary, 669, 669 (figure), 670 (figure)
history, 666–669, 668 (figure)
process overview, 529–531, 530 (figure)
rates of, 26 (figure), 29–31, 29 (figure), 30 (figure), 30 (table)
oil
contemporary, 664–666, 666 (figure)
historical data, 25 (figure)
history of, 660–664, 662 (figure), 663 (figure), 664 (figure)
overview, 22 (figure), 24–26
top ten countries, 26 (table)
process overview, 529–531, 530 (figure)
prospective outlook on, 21
reservoir classification based on, 4–5, 6–9
risk involved, 617 (figure)
semisubmersible projects
capacity-reserves relations, 636, 637 (figure), 638 (figure)
initial production rates, 630, 635 (table), 636 (figure)
oil and gas, 628, 631 (table), 632 (figure)
peak production to reserves ratio, 631, 635, 637 (table)
producing wells, 629, 634 (figure)
production capacity, 631, 636 (table)
production cost, 644
revenue, 638 (table), 639 (figure), 640 (figure), 641 (figure)
scale of, 628–629, 632 (figure), 633 (figure)
unit production, 630, 634 (figure)
shale-hosted hydrocarbon, projected, 389–390, 389 (figure)
unconventional gas, 40–41, 41 (figure), 42 (table)
unconventional oil, 36–40, 37 (figure), 38 (figure), 38 (table),
39 (figure), 40 (figure), 40 (table)
See also primary production facilities; specific production stages
and techniques
production data analysis (PDA), 415, 416–420, 419 (figure),
420 (figure)
production engineering. See natural gas production engineering
production facilities. See primary production facilities
production optimization, data mining for, 168–175
data availability and statistical analysis, 168–170, 169 (table),
170 (table)
data-driven modeling, 170–173, 171 (figure), 172 (figure)
full-asset type curve analysis, 174, 175 (figure)
single-well, single-parameter sensitivity analysis, 173, 173 (figure)
single-well, type curve analysis, 173, 174 (figure)
single-well uncertainty analysis, 174–175, 175 (figure)
production periods, gas field
build-up, 421–422, 421 (figure)
decline, 421 (figure), 422–423
plateau, 421 (figure), 422, 423–424
production platforms, 679. See also specific platform types; specific platforms
productivity index (PI), gas well, 399, 400, 418, 420, 420 (figure)
profitability, semisubmersible projects, 645, 647 (figure), 647 (table), 648, 648 (figure)
propane, PVT relations of, 67, 67 (figure)
property modeling, 110
proppants, hydraulic fracturing, 325–327, 326 (table), 327 (table), 336, 351
propped hydraulic fracturing, 354–358
derivation of planar-3D model, 356–358
model comparison, 357 (table)
overview, 354–355
pseudo-3D and 3D models, 355–356, 355 (figure)
prospective outlook on long-term energy systems (POLES), 49 (table), 52 (figure)
prospective outlook on world oil and gas reserves, 21–52
data reliability, 41–43 energy future
deep-water oil and gas outlook, 35–36, 36 (figure)
fuel production and consumption, 31–35
unconventional gas, 40–41, 41 (figure), 42 (table)
unconventional oil, 36–40, 37 (figure), 38 (figure), 39 (table), 39 (figure), 40 (figure), 40 (table)
energy systems models, 48, 49–50 (table), 50–52
estimation methods, 43–48, 43 (figure), 47 (figure)
fuel production and consumption, 31–35, 32 (figure), 33 (figure), 34 (figure)
natural gas, 26–31, 26 (figure), 27 (figure), 27 (table), 28 (figure), 29 (figure), 30 (figure), 30 (table)
oil, 21–26, 22 (figure), 23 (figure), 24 (figure), 25 (figure), 26 (table)
total world energy consumption, 31 (figure)
protection equipment, 561
proved reserves, 693–694, 695 (figure), 696 (figure). See also reserves
pseudo-3D models, hydraulic fracturing, 355–356, 356 (figure), 357 (table)
Pseudomonas aeruginosa strains, in MEOR, 472
pseudo-pressure approach
deliverability and inflow analysis, 398, 400–401, 402–403, 403 (figure), 403 (table)
well performance analysis, 411–412
pseudo-steady state (PSS) flow, 399, 400
pseudo-time concept, MB, 417–418
pseudo-time variable, deliverability and inflow analysis, 399
pulse decay method, 78
pump-off test (POT), 210
pumps
for pipelines, 511, 512 (figure)
solar, 689
purification, natural gas, 531
push-the-bit RSS, 220–221, 221 (figure)
pyrolysis, 339–340, 339 (figure), 377–378
Q quality maps, for well configuration, 254–255, 254 (figure)
quantitative evaluation of traps, 130–133, 132 (figure), 145–146, 145 (figure), 146 (table)
asphaltene deposition, 498–499
in environmental management, 549
remote terminal units (RTUs), solar, 687, 687 (figure)
renewable energy sources
comparative analysis between fossil fuels and, 657–660, 659 (figure), 659 (table), 660 (table)
energy future, 35
technical potential of, 683 (figure)
trends in focus on, 663
See also specific renewable energy sources
repairs, storage and transportation, 525–526, 525 (figure)
representative elementary volume (REV), 180, 180 (figure)
reserves
data reliability, 41–43
depletion estimation, 45–48, 47 (figure)
energy future, 693–694, 694 (figure), 695 (figure), 696, 696 (figure)
estimation methods, 43–45, 43 (figure)
of gas in GHDs, determining, 448, 450–451
Messoyakha gas hydrate deposit, 453–454, 454 (figure)
natural gas
contemporary, 669, 669 (figure), 670 (figure)
energy future, 693–694, 695 (figure), 696, 696 (figure)
estimation methods, 43–45, 43 (figure)
general discussion, 27–29
historical data, 27 (figure), 28 (figure)
overview, 26 (figure)
top ten countries, 27 (table)
oil
contemporary, 664–666, 665 (figure)
energy future, 693–694, 695 (figure), 696
estimation methods, 43–45, 43 (figure)
historical data, 23 (figure), 24 (figure)
overview, 21–24, 22 (figure)
top ten countries, 23 (table)
semisubmersible projects
capacity-reserves relations, 635, 636, 637 (figure), 638 (figure)
peak production to reserves ratio, 631, 635, 637 (table)
project costs, 627–628, 628 (figure)
remaining, 640–641, 643 (table), 644 (table)
reserves–production trajectories, 641, 645 (figure)
well reserves, 641, 646 (figure)
unconventional gas, 41 (figure)
unconventional oil, 37 (figure)
validating, in numerical reservoir simulation, 192
See also natural gas production engineering
reserve-to-production (R/P) ratio
natural gas, 26, (figure), 28–29
oil, 22, 22 (figure), 23, 24 (figure), 695 (figure)
reserve depletion estimation, 45
reservoir characterization
defined, 18
numerical reservoir simulation, 190
oil field data mining in
overview, 152–153, 152 (figure)
seismic survey, 154
seismic to well logs, 153–154, 153 (figure)
synthetic model, 154–161, 155 (figure), 155 (table), 156 (figure), 157 (figure), 158 (figure), 158 (table), 159–161 (figure), 161 (table)
Valley Field case study, 161–164, 162 (figure), 163 (figure), 164 (table), 165–168 (figure), 165 (table)
reservoir complexity, 612
reservoir conformance, polymer flooding, 256–258, 257 (figure), 257 (table), 258 (figure)
reservoir engineering. See numerical reservoir simulation
reservoir fluids, 62–75
capillary pressure and wettability, 69–73, 69 (figure), 70 (figure), 71 (figure), 72 (figure)
crude oil, 64 (table), 65–66, 66 (figure)
fluid saturation, 55–56
formation damage, 75
formation water, 69
gas, 62–63, 62 (table), 63 (figure)
phase behavior, 66–69, 67 (figure), 68 (figure), 68 (table)
properties of, 65–66
relative permeability, 73–75, 74 (figure)
reservoir classification based on initial state of, 2–4, 3 (figure)
rock and fluid interactions, 69–75, 69 (figure), 70 (figure), 71 (figure), 72 (figure), 74 (figure)
reservoir management, 177–178, 251, 252 (figure), 253–255, 254 (figure)
reservoir rock, 2 (figure)
capillary pressure and wettability, 69–73, 69 (figure), 70 (figure), 71 (figure), 72 (figure)
characteristics of, 9–16
compressibility, 60–61, 61 (figure)
core acquisition and analysis, 61–62
defined, 375
depositional environments, 5–6
evaluation of, 11–16
and fluid electric properties, 59–60, 60 (figure)
fluid saturation, 55–56
formation damage, 75
fracture permeability and porosity, 58, 58 (figure)
grain size and pore size distributions, 58–59, 59 (figure), 59 (table)
heterogeneous, 11, 16
overview, 2
permeability, 2, 10–11, 56–57, 56 (figure), 57 (figure), 58 (figure)
porosity, 2, 10, 55, 56 (figure)
relative permeability, 73–75, 74 (figure)
rock and fluid interactions, 69–75, 69 (figure), 70 (figure), 71 (figure), 72 (figure), 74 (figure)
total organic content, 76, 76 (table), 77 (figure)
unconventional reservoirs, 75–79
See also petroleum geomechanics; specific rock types
reservoir simulation, 45. See also numerical reservoir simulation
reservoirs, 1–18
classification of depositional environments, 5–6
initial state of fluids, 2–4, 3 (figure)
pore systems, 6
production/drive mechanism, 4–5
recovery/production technology, 6–9
conventional, 6
cyclic steam stimulation, selecting for, 304, 305 (table)
deepwater offshore, 302, 341–342, 341 (figure), 342 (table), 343 (figure), 344 (figure), 346–347
deliverability and inflow performance analysis, 398–404, 401 (table), 402 (figure), 403 (figure), 403 (table), 404 (figure)
depressurization, for methane hydrate production, 334–335
depth, 1, 2 (figure)
Dongying Sag petroleum system, 135–136, 135 (figure)
geophysical well logging, 16–17
heterogeneity and performance of, 17–18
hydrocarbon source rock, 1
modeling, 18
overview, 1–2
permeability reduction caused by polymer flooding, 259–260
steam flooding, selecting for, 308, 308 (table)
steam-assisted gravity drainage, selecting for, 309, 310 (table)
structure, 1
unconventional, 6–9, 75–79
volumetrics, 415
well, reservoir, and facility management, 701–704, 702 (figure),
703 (figure)
well testing, 17
See also microbiology of petroleum reservoirs; numerical reservoir simulation; reservoir characterization; reservoir fluids; reservoir rock; specific reservoir types
resilient toroid seals, 520, 521 (figure)
resins, 267 (table), 485–486, 486 (figure)
resistivity, 15, 16, 60
restored wettability, 72
restored-state core analysis, 14, 15
restrictions, gas hydrate, 439–441, 440 (figure)
retorting
kerogen, 339 (figure), 339–340
oil shale, 384–387, 385 (figure)
retrograde condensation, 3–4
retrograde gases. See gas condensate reservoirs
reusing wastewater, 554–555
revenue, semisubmersible production, 638 (table), 639 (figure),
640 (figure), 641 (figure)
reverse ISC, 314
reversibility, asphaltene precipitation, 489–490
reversible-micellization model, 491
rheology
drilling fluids, 208, 208 (figure)
fracturing fluids, 363
Rhodococcus strains, in MEOR, 472
rig-based rotary systems, 199–200, 202 (figure)
right-hand walk (RHW), 224
rim seals, storage tank, 519–520, 520 (figure)
riserless drilling, 215, 216 (figure)
risers
decommissioning cost, 582, 585 (table), 589 (figure), 593
deepwater systems, 610
floating systems, 577, 578 (figure)
offshore pipelines, 514, 514 (figure)
semisubmersibles, 601, 601 (figure)
risk, semisubmersible project, 616–618, 616 (figure), 617 (figure),
618 (figure), 641
risk analysis, 550 (figure), 550–552
risk matrix, 617–618, 618 (figure)
rock and liquid expansion drive, 5, 250 (table)
rock stratum evaluation submodel, 127
rock stratum temperature, ancient, 120–121
rocks
radioactive heat generation rate of, 119 (table)
surfactant retention in rock formations, 281–283, 282 (table)
See also petroleum geomechanics; reservoir rock; specific rock types
roller cone (RC) bits, 205, 206, 206 (figure)
roofs, storage tank, 519–521
rotary control device (RCD), 214, 214 (figure)
rotary drilling, 197, 197 (figure)
rotary screw compressors, 243
rotary speed, 209, 209 (figure)
rotary systems, drill rig, 199–201, 202 (figure), 203 (figure),
204 (figure)
rotary table and Kelly system, 199–200, 202 (figure)
rotary vane-style compressors, 243, 244 (figure)
rotary-percussion drilling, 197, 197 (figure)
rotary-steerable systems (RSS), 220–221, 221 (figure)
routine core analysis, 13
royalty payments, semisubmersible projects, 644
runoff, stormwater, 539, 559
Russell volumeter, 55, 56 (figure)
Russian Federation, regulatory framework in, 534
S
safeguarding, 560
safety
associations for, 547–548
concerns and issues, 543, 544–546 (table), 546–547
handling of petroleum product, 523–526
health and safety management systems, 549–553, 550 (figure),
551 (figure), 552 (figure), 553 (figure)
hydrate control, 439–440
minimizing hazards, 557–562, 558 (figure), 559 (figure),
560 (figure), 561 (figure), 562 (figure), 563 (figure)
regulations, 532–537
St. Malo project, 655. See also semisubmersibles
salinity
microbiology of petroleum reservoirs, 462
negative salinity gradient, 283
Salsa platform removal cost estimate, 590
salt plugs, 440, 440 (figure)
 salty, in hydrate control, 438, 438 (figure)
 sanctioning of offshore development projects, 614, 615 (figure)
sand-dominated reservoirs, methane hydrates in, 333–334
sand-pack columns experiments, MEOR, 470–473
sandstone. See reservoir rock
SARA analysis, 485–486, 486 (figure)
saturates, 485–486, 486 (figure)
saturation
capillary hysteresis and, 70–71, 71 (figure)
fluid, 14, 55–56, 181–182
numerical reservoir simulation, 181–182
relative permeability measurement and, 15
saturation pressure. See bubble-point pressure
saturation-matching process, 192–193, 194 (figure)
scale
inhibiting formation of, 440
of semisubmersibles, 628–629, 632 (figure)
scale economies, semisubmersible projects, 628, 629 (table),
630 (figure)
sea transportation, 516–518, 516 (table), 517 (figure), 517 (table),
518 (figure), 518 (table)
seabed chemical injection, for hydrate control, 439
seafloor assembly (SFA), 226–227, 229 (figure)
seafloor deformation monitoring, 102
seafloor massive methane hydrate deposits, 334
secondary containments, 525
secondary porosity, 6, 11, 55
secondary recovery, 249–255, 250 (figure), 252 (figure), 253 (figure), 254 (figure), 461, 530, 699, 700 (figure)
sector models, numerical reservoir simulation, 191 security hazards, 547, 560–561 Security Vulnerability Analysis, 551
seismic surveys, 154, 530, 703–704, 703 (figure)

dimensional rocks, 2, 5–6. See also reservoir rock; shale- and mudstone-hosted oil and gas; specific rock types
seismic activity, and hydraulic fracturing, 329, 388, 541
self-heating retorting process, 340
self-heating retorting process, 340
seismic surveys, 154, 530, 703–704, 703 (figure)
selective plugging, 470, 472
selective plugging, 470, 472
self-heating retorting process, 340
self-heating retorting process, 340
seismic data

correlation of surface seismic with VSP, 156–157, 156 (figure), 157 (figure)
correlation of VSP with well logs, 157–159, 157 (figure), 158 (figure), 158 (table), 159–161 (figure), 161 (table)
modeling of well logs from, 153–154, 153 (figure)
seismic surveys, 154
synthetic models derived from, 155 (figure), 155 (table), 156 (figure)
Valley Field case study, 161–162

dissolutional processes, 155 (figure), 155 (table)
seismic surveys, 154, 530, 703–704, 703 (figure)
seismic surveys, 154, 530, 703–704, 703 (figure)
sector models, numerical reservoir simulation, 191
sector models, numerical reservoir simulation, 191
sampling techniques, 164
scale of, 628–629, 632 (figure), 633 (figure)
scaling, 628–629, 632 (figure), 633 (figure)
scaling, 628–629, 632 (figure), 633 (figure)
secondary gas hydrate crystals, 444, 444–445 (figure)
segregation arrangements in process plants, 559, 559 (figure)
segregation arrangements in process plants, 559, 559 (figure)
separation process, 249–255, 250 (figure), 252 (figure), 253 (figure), 254 (figure), 461, 530, 699, 700 (figure)
sector models, numerical reservoir simulation, 191
sector models, numerical reservoir simulation, 191
shale (rock)
capillary pressure by isotherms, 78–79, 78 (figure)
defined, 375
mineral composition of, 75–76, 76 (table)
mineralogy of, 376–377 (figure), 376–377
original gas in place, 76–77
permeability, 78, 78 (figure)
potential resources, 382, 382 (figure), 383 (figure)
total organic content, 76, 76 (table), 77 (figure)
See also gas shale; kerogen; oil shale; shale gas; shale oil

growth and fluid injection, 631–632
hand density, 631
hand density, 631
horizontal or directional drilling, 324–325, 325 (figure)
hydraulic fracturing fluids and proppants, 325–326, 326 (figure), 326 (table), 327 (table)
productions projections, 389–390
terminology, 374–377, 374 (figure), 376 (figure), 377 (figure)
shale gas
defined, 321, 377
development in United States, 673–674, 674 (table)
developments related to, 672–673, 672 (figure), 673 (figure)
environmental concerns, 537, 675
fracturing-fluid flowback, 327–328
horizontal or directional drilling, 322–323, 324 (figure)
hydraulic fracturing fluids and proppants, 325–327, 326 (table), 327 (table)
hydraulic fracturing overview, 325, 325 (figure)
progress of technology improvement, 390
potential resources, 378–383, 381 (figure), 382 (figure), 382 (table), 383 (table)
production projections, 389–390
terminology, 374–377, 374 (figure), 376 (figure), 377 (figure)
shale gas
defined, 321, 377
development in United States, 673–674, 674 (table)
developments related to, 672–673, 672 (figure), 673 (figure)
environmental concerns, 537, 675
fracturing-fluid flowback, 327–328
horizontal or directional drilling, 322–323, 324 (figure)
hydraulic fracturing fluids and proppants, 325–327, 326 (table), 327 (table)
hydraulic fracturing overview, 325, 325 (figure)
progress of technology improvement, 390
potential resources, 378–383, 381 (figure), 382 (figure), 382 (table), 383 (table)
production projections, 389–390, 389 (figure)
recent developments, 329
See also hydraulic fracturing

shale oil
advances in production, 337
defined, 377
energy future, 39, 39 (figure), 39 (table), 697
field development, 336–337
general discussion, 346
geophysical technologies, 336
operational challenges, 337

define, 321, 377
development in United States, 673–674, 674 (table)
developments related to, 672–673, 672 (figure), 673 (figure)
environmental concerns, 537, 675
fracturing-fluid flowback, 327–328
horizontal or directional drilling, 322–323, 324 (figure)
hydraulic fracturing fluids and proppants, 325–327, 326 (table), 327 (table)
hydraulic fracturing overview, 325, 325 (figure)
progress of technology improvement, 390
potential resources, 378–383, 381 (figure), 382 (figure), 382 (table), 383 (table)
production projections, 389–390, 389 (figure)
recent developments, 329
See also hydraulic fracturing

hydraulic fracturing

shale oil

advances in production, 337
defined, 377
energy future, 39, 39 (figure), 39 (table), 697
field development, 336–337
general discussion, 346
geophysical technologies, 336
operational challenges, 337
overview, 302, 335–336, 373
potential resources, 379–380, 381 (figure)
production projections, 389
unconventional production wells, 336
See also kerogen; oil shale; tight gas
shallow-water flows, 609
shape factors, 399, 400
shear deformation, 84, 84 (figure)
shear failure, 93–94, 93 (figure), 94 (figure)
shear modulus, 88, 88 (figure)
shear rams, 205, 205 (figure)
shear strain, 85, 85 (figure)
shearing mechanism recovery method, 114–115, 114 (figure)
shear-thickening behavior of polymer solutions, 259, 259 (figure)
shear-thinning behavior of polymer solutions, 258–259, 259 (figure)
Shell In Situ Conversion Process, 384–386, 385 (figure)
shipping industry, 516, 516 (table)
shutdown, emergency, 562
shut-in procedures, 213–214
sidewall coring, 12, 61
sieve analysis, grain size distribution by, 59, 59 (table)
siltstone, 375
simulation models
energy systems models, 49 (table), 51, 51 (figure)
reserve depletion estimation, 46–47, 47 (figure)
See also numerical reservoir simulation; 3D dynamic simulation of pool-forming
single steel drilling caisson (SSDC), 225, 228 (figure)
single-parameter sensitivity analysis, 173, 173 (figure)
single-phase flow
deliverability and inflow analysis, 398–400
numerical reservoir simulation, 181, 187
well performance analysis, 411
wellbore and outflow performance analysis, 405–408
single-phase liquid, 3, 73
single-well, single-parameter sensitivity analysis, 173, 173 (figure)
single-well, type curve analysis, 173, 174 (figure)
Single-Well SAGD (SW-SAGD), 311
single-well uncertainty analysis, 174–175, 175 (figure)
site clearance and verification, 582
slick drill string, 198, 200 (figure)
slickwater fracturing fluid, 325, 327 (table), 352, 360–361, 362 (figure)
slim-tube displacement tests, 275, 275 (figure)
slips, as workplace hazard, 543
smart completions, 609
smart field configurations, 702, 702 (figure)
smart pigs, 525, 525 (figure)
smart water flooding, 701
Soave-Redlich-Kwong (SRK) EOS, 67–68
soil contamination, 540–541, 541 (table)
solar energy
background of, 683–684, 683 (figure)
challenges faced by, 686
economics of, 685–686
potential of, 685, 686 (figure)
storage, 686
technologies, 684, 684 (figure), 685 (figure)
in upstream oil supply chain, 686–690, 687 (figure), 687 (table), 688 (figure), 690 (figure)
solid scale, inhibiting formation of, 440
solid waste management, 541
solids separation, 241, 241 (figure)
solubility models of asphaltenes, 483, 490–491
solubilization ratio, 280–281
solution gas, 62, 62 (table)
solution gas–oil ratio, 65–66, 66 (figure)
solution-gas drive reservoirs, 4, 4 (figure)
solvent-mediated processes, 316, 317 (figure)
solvents
for asphaltene deposition treatment, 498–499
FCM, 272, 273
microbial, 470
sonic logging, 17
sour fluids, topsides facilities, 611
source rock
defined, 1, 375
generation of hydrocarbons from, 377–378, 378 (figure), 379 (figure), 380 (figure)
See also reservoir rock; shale- and mudstone-hosted oil and gas
South America, regulatory framework in, 535–536
spatial discretization, 182, 182 (figure), 183–184
special core analysis, 14–16
specific gravity, 63, 65
spectroscopy, 487
spontaneous imbibition method, 73
stable flow condition, 412, 412 (figure)
stable isotopic probing (SIP), 465
staged hydrocarbon expulsion model, 122, 122 (figure)
stages of separation, topsides facilities, 610, 612 (figure)
static geological modeling, 3D, 109–112, 110 (figure), 111 (figure)
static parameters, geomechanical, 96, 99, 99 (figure)
statistical analysis, 171, 171 (figure)
steady-state (SS) flow, 14–15, 74, 74 (figure), 400
steam and gas push (SAGP), 311
steam flooding/steam drive, 288–289, 288 (figure), 289 (table), 307–309, 307 (figure), 308 (table), 344
steam generation from solar power, 688–689, 688 (figure)
steam soak. See cyclic steam stimulation
steam-assisted gravity drainage (SAGD), 9, 289–290, 290 (figure), 309–313, 309 (figure), 310 (table), 312–313 (table), 344
steerable assemblies, 219–220, 220 (figure)
steering tools, subsurface, 219–221, 220 (figure), 221 (figure)
stimulation, unconventional production wells, 336. See also hydraulic fracturing
stochastic methods, reserve estimation, 44–45
stock tank oil density, 65
Stone model, 73
storage, 518–523
corrosion prevention, 523–524, 524 (figure)
cryogenic tanks, 522–523, 523 (figure)
emission, 521–522, 522 (figure)
filling and discharging practice, 526, 526 (figure)
fire prevention and extinguishing, 525
fixed roofs, 521, 521 (figure)
flexible piping system, 520
floating roofs, 519
foundation, 522
fundamentals, 518–519
general design, 519
groundwater protection, 524–525, 525 (figure)
history of, 507
hot tanks, 522
leak detection, 524
maintenance and repairs, 525–526, 525 (figure)
natural gas, 523, 523 (figure), 666
properties of petroleum products, 508–509
rim seals, 519–520, 520 (figure), 521 (figure)
roof, 519–521, 520 (figure)
safe handling of petroleum product, 523–526
settlement and releveling, 522
solar energy, 686
standards and regulations, 507
venting, 521, 521 (figure)
storage porosity, 6
storativity coefficient, 11, 17
stormwater runoff, 539, 559
strain, 83–85, 84 (figure), 85 (figure)
strain hardening, 92
stratigraphic traps, 1
stratum framework model, 110
See also structure-stratum framework simulation
strength parameters, in petroleum geomechanics, 96
stress
change monitoring, 103
effective, 8, 89–90, 93–94
fluid potential, 125
gradients, expressing components as, 87, 88 (figure)
overview, 85–87, 86 (figure), 87 (figure)
parameters for, 96
in situ, 87, 99–101
subsurface measurement of, 100 (figure), 100–101
thermal, 90–91
total, 89
yield, 91, 91 (figure)
stress intensity factor, PL3D hydraulic fracturing model, 357
strip-mining techniques, oil sands, 531. See also oil sands mining
structural deformation recovery, 113–116, 113 (figure), 114 (figure), 115 (figure)
structural traps, 1
Structure 23800 pipeline decommissioning cost, 588
structures
deepwater
decommissioning, 582, 593, 597
overview, 599, 600 (figure)
reservoir, 1
See also specific structure types
structure-stratum framework simulation
3D dynamic, 112–116, 112 (figure), 113 (figure), 114 (figure), 115 (figure)
3D static, 109–112, 110 (figure), 111 (figure)
Dongying Sag petroleum system example, 136–138, 138 (figure), 139 (figure)
submersible MODUs, 225, 227 (figure), 228 (figure)
subsalt wells, 609
subsea equipment, umbilicals, risers and flowlines (SURF)
deepwater systems, 606, 609–610, 611 (figure)
semisubmersible projects, 623, 624 (table), 625 (figure)
subsea pipelines, 514, 514 (figure)
subsea systems, 600 (figure)
subsurface steering tools, 219–221, 220 (figure), 221 (figure)
subsurface structure, reservoirs, 1
Suez Canal, 516
Sukkar and Cornell method, 406
sulfate-reducing bacteria (SRB), 462–463, 463 (table), 470–471
sulfur dioxide (SO₂) hydrates, 433, 434 (figure)
Sumed pipeline, 516
supervised neural networks, 150
supervisory control and data acquisition (SCADA) systems, 512–513, 514, 515 (figure), 687
supply chain. See upstream oil supply chain
surface deformation, monitoring, 102
surface piercing articulating risers (spars), 600 (figure)
decommissioning cost algorithms, 590–591, 590 (table)
deepwater inventory, 580–581, 581 (figure)
overview, 577, 577 (figure)
See also floating systems
surface processing, oil shale, 384
surface seismic
correlation with VSP, 156–157, 156 (figure), 157 (figure)
synthetic models derived from, 155–156, 155 (figure), 155 (table), 156 (figure)
surface-prepared gels, 267, 267 (figure)
surfactant flooding, 277–285
adding polymer to, 281
ASP flooding, 285–286
critical micelle concentration, 278, 279 (figure)
field applications, 283–285, 285 (figure)
 microemulsion viscosity, 281
overview, 277, 277 (figure)
phase behavior, 278–281, 279 (figure), 280 (figure)
retention in rock formations, 281–283, 282 (table)
surfactant classification, 277, 278 (table)
trends in, 283, 284 (table)
See also biosurfactants
surveillance, of petroleum geomechanics, 102–103
sustainable source energy, 658
sweep efficiency, FCM, 272–273, 273 (figure)
Syncrude and Suncor froth treatments, 317
synthetic crude oil (SCO), 318–319
synthetic model, reservoir characterization, 154–161
methodology, 156–159, 157 (figure), 158 (figure), 158 (table), 159–161 (figure), 161 (table)
model output, 156
overview, 154–155, 155 (table)
surface seismic and VSP-derived models, 155 (figure), 155 (table), 155–156, 156 (figure)
synthetic-based mud (SBM), 207
system design, 3D dynamic simulation of pool-forming, 109, 133–134, 133 (figure)
��統 performance analysis, gas well, 411–414, 411 (figure), 412 (figure), 413 (table), 414 (figure), 414 (table)
systems simulation, reserve depletion estimation, 46–47, 47 (figure)

T
tailings, oil sand, 317–318, 318 (figure), 318 (table), 319 (table)
tailings ponds, 540, 542
tanker transportation, 517–518, 517 (figure), 517 (table)
tar balls, 541
tar sands, 9. See also bitumen; oil sands mining
taut moorings, 601–602, 601 (figure)
Taylor’s Theorem, 182
technologically recoverable resources (TRR), 352
technogenic gas hydrates, 430
technological advancements and innovation, 704–706, 704 (figure), 705 (figure)
telecommunication, solar energy in, 686–687, 687 (figure)
Telemark project, 654. See also semisubmersibles
temperature
- average temperature and compressibility method, 406
- emulsion treater, 236
- microbiology of petroleum reservoirs, 462
- in petroleum geomechanics, 90–91
subsurface, 1
See also geothermal field evolution simulation
temporal discretization, 182, 182 (figure), 184, 185 (figure)
tendon systems, floating platforms
decommissioning cost, 590–591, 593
overview, 577, 578 (figure), 601, 601 (figure)
removing, 582
tensile failure, 93
tensile strength testing, 98, 98 (figure)
tension leg platforms (TLPs), 600 (figure)
decommissioning cost algorithms, 590–591, 590 (table)
depwater inventory, 578, 580, 580 (figure)
overview, 577, 577 (figure)
See also floating systems
terminal velocity, 233
Terra Nova FPSO, 341–342
tertiary recovery, 530, 699, 700 (figure). See also enhanced oil recovery
Terzaghi effective stress, 89
thermal conduction, 116, 117
thermal convection, 117
thermal effects, in petroleum geomechanics, 90–91, 96
thermal expansion testing, 98
thermal field evolution. See geothermal field evolution simulation
thermal recovery methods
cyclic steam stimulation, 287–288, 288 (figure), 304, 304 (figure), 305–306 (table), 306–307
- electro-thermal dynamic stripping, 315
- expanding solvent SAGD, 289, 290 (figure)
for methane hydrate production, 335
overview, 287, 302, 303–304, 468, 531
in situ combustion, 290–291, 291 (table), 292 (figure), 313–315, 314 (figure), 315 (figure)
steam flooding or steam drive, 288–289, 288 (figure), 289 (table), 307–309, 307 (figure), 308 (table)
- steam-assisted gravity drainage, 289–290, 290 (figure), 309–313, 309 (figure), 310 (table), 312–313 (table)
thermal-assisted gravity drainage, 315–316
VAPEX, 289, 290 (figure)
thermal solar energy, 684, 686
thermal stability of polymers, 261 (table)
thermal structure analysis, 118–120, 119 (table), 120 (table)
thermal treatments, asphaltene deposition, 499
thermal-assisted gravity drainage (TAGD), 315–316
thermally mature mudstone, oil and gas production from, 387–389
thermodynamic conditions, locating HFZs by, 447, 448 (figure), 449 (figure)
thermodynamic inhibitors, 437, 438 (figure), 439
thermodynamic models of asphaltenes, 485, 490, 491–492, 496
thermodynamics, pipe flow, 510
thickened ice pads, 227, 229 (figure)
3D dynamic simulation of pool-forming
grothal field evolution, 116–121, 117 (figure), 118 (figure), 119 (table), 120 (table)
hydrocarbon expulsion history, 122–123, 122 (figure)
hydrocarbon generation history, 121–122
hydrocarbon migration and accumulation history, 123–130, 126 (figure), 127 (figure), 131 (figure)
relationship of all portions of model, 110 (figure)
static geological modeling, 109–112
structure-stratum framework simulation, 112–116
system design, 109, 133–134, 133 (figure)
torque, in directional drilling, 224–225, 226 (figure)
total (absolute) porosity, 10, 55
total organic content (TOC), 76, 76 (table), 77 (figure)
total stress, 89
toxicity
of hydraulic fracturing fluids, 366
of oil sand tailings, 317–318, 318 (table)
See also environmental concerns; waste; wastewater
trace oil removal from wastewater, 239–241, 240 (figure)
intractions, 85–86, 86 (figure)
training, in health and safety management systems, 552
trajectories, directional. See well trajectories, directional
trans-Alaska pipeline, 516
transient PI method, 418, 420, 420 (figure)
transient testing, 12, 17
transmissibility coefficients, 184
transportation

corrosion prevention, 523–524, 524 (figure)
environmental concerns, 537
filling and discharging practice, 526, 526 (figure)
fire prevention and extinguishing, 525
groundwater protection, 524–525, 525 (figure)
history of, 507, 508 (figure)
leak detection, 524
maintenance and repairs, 525–526, 525 (figure)

modes of, 509, 509 (table)
natural gas, issues with, 666
in production process, 530–531
properties of petroleum products, 508–509
safe handling of petroleum product, 523–526
by sea, 516 (table), 516–518, 517 (figure), 517 (table), 518 (figure), 518 (table)
standards and regulations, 507
See also pipelines
trap quantitative evaluation, 130–133, 132 (figure), 145–146, 145 (figure), 146 (table)
traps, classification of, 1
traveling block, 199 (figure), 199 (table)
treatment

crude oil refining, 531
of produced water, 328
of waste, 554–555, 555 (figure)
of wastewater, 554–555, 556 (table)
uniaxial compaction, 101, 102 (figure)
triaxial compression testing, 93 (figure), 96–97, 96 (figure), 97 (figure)
Tripathy, 96–97, 96 (figure), 97 (figure)
triaxial compaction, 101, 102 (figure)
triaxial-strain pore volume compressibility (UPVC) test, 97–98, 98 (figure)
TSP bits, 206, 206 (figure)
tubing

well performance analysis, 412, 413–414, 413 (table), 414 (figure), 414 (table)
wellbore and outflow performance analysis, 404–411
turbine meters, 246, 246 (figure)
turbodrills, 201, 204 (figure)
turbulent flow, 398, 400
Turkey, regulatory framework in, 535
two-dimensional (2D) models, hydraulic fracturing, 355, 355 (figure), 357 (table)
two-phase flow, Beggs and Brill correlation for, 410–411
two-phase relative permeability, 74–75, 74 (figure)
two-phase separators, 234, 234 (figure), 234 (table), 235 (figure)
two-segment procedure, decline curve analysis, 368–369, 368 (figure), 369 (figure)
type curve analysis, 173–174, 174 (figure), 175 (figure)
type-curve matching PDA method, 417–418, 420, 420 (figure)

U

U.S. Bureau of Mines (USBM) method, 72 (figure), 73
Uinta Basin, 378, 381 (figure)
ultra-large crude carriers (ULCC), 517 (table), 518
ultraviolet (UV), asphaltene precipitation studies with, 487
umbilicals

decommissioning cost, 582, 585 (table), 588–589, 589 (figure), 593
deeplayer systems, 609–610
semisubmersible projects, 623, 624 (table)
uncertainty

cost estimation, 583
decommissioning cost algorithms, 584
semisubmersible project costs, 624–625, 626, 627
uncertainty analysis, 174–175, 175 (figure)
unchanged plane-length mechanism, 114–115
unconfined compressive strength (UCS) test, 97, 99, 100 (figure)
unconformable plane evaluation submodel, 129
unconventional hydrocarbon resources

decline curve analysis, 368
developments in, 672–673, 672 (figure), 673 (figure)
distribution of, 301, 302 (figure)
energy future, 697, 697 (figure), 698 (figure), 699 (figure)
gas, 40–41, 41 (figure), 42 (table), 321, 531, 532 (figure)
general discussion, 346–347
oil, 36–40, 37 (figure), 38 (figure), 38 (table), 39 (figure), 39 (table), 40 (figure), 40 (table)
overview, 301, 301

termology related to, 374–377, 374 (figure), 376 (figure), 377 (figure)
trends in focus on, 663–664
See also shale- and mudstone-hosted oil and gas; specific resources
unconventional locations, hydrocarbon accumulations
in. See also deepwater development; deepwater offshore reservoirs
unconventional production wells, 336, 337
unconventional reservoirs

capillary pressure by isotherms, 78 (figure), 78–79
defined, 301
hydrocarbon resource triangle, 302 (figure)
original gas in place, 76–77, 77 (figure)
overview, 6–9, 75–76
permeability, 77–78, 78 (figure)
total organic content, 76, 76 (table)
See also specific recovery methods; specific resources; unconventional hydrocarbon resources
underbalanced drilling (UBD), 207, 214
undercompaction section submodel of thermal evolution, 117
underground disposal, flowback water, 328
underground storage, natural gas, 523, 523 (figure)
undersaturated oil reservoirs, 4
uniaxial compaction coefficient, 95
uniaxial-strain compaction, 101, 102 (figure)
uniaxial-strain pore volume compressibility (UPVC) test, 97–98, 98 (figure)
unit development cost, semisubmersible projects, 628, 629 (figure), 629 (table), 630 (figure)
unit production, semisubmersible projects, 623, 624 (table)
United Kingdom, regulatory framework in, 533–534
United States

economy of, 352, 353 (figure), 354 (figure)
EOR technique implementation in, 700, 701 (figure)
regulatory framework in, 532–533
shale gas development in, 673–674, 674 (table)
unconventional hydrocarbon resources in, 697, 698 (figure), 699 (figure)
Viscosimetry, capillary, 487–488

Viscosity
- bitumen, 302–303, 302 (table)
- crude oil, 66
- drilling fluids, 208
- floodwater, polymer flooding as enhancing, 258–259, 259 (figure)
- heavy oil, 9, 302–303, 302 (table)
- microemulsion, 281, 284 (table)
- petroleum product, 509
- real gas, 63, 63 (figure)
- relative permeability and, 74

Viscosity-control scheme, polymer flooding, 264 (table)

Viscous fingering, mobility-induced, 258, 258 (figure)

Viscous fracturing fluids, 351–352. See also hydraulic fracturing

Vitrinite reflection rate, 120–121

Volatile oil, 3, 68, 68 (figure), 68 (table)

Volatility, petroleum product, 509

Volume balance method, 112–116, 112 (figure), 113 (figure), 114 (figure), 115 (figure)

Volumetric deformation, 83–84, 84 (figure)

Volumetric gas reservoirs, 5

Volumetric method, reserve estimation, 44–45

Volumetric strain, 85

Volumetric sweep efficiency, 256–258, 257 (figure), 257 (table), 258 (figure)

Vugular-solution porosity system, 6

Wander, well trajectory, 223–224, 224 (figure)

Warning signs, 560. See also safety

Waste
- from drilling, 538–539, 539 (figure), 542, 555, 555 (figure)
- management of, 555
- oil sand, 317–318, 318 (figure), 318 (table), 319 (table)
- solid, 541

Wastewater
- ecological effects, 542–543
- environmental concerns, 538–540, 538 (figure), 539 (figure), 539 (table)
- minimizing, 554–555
- trace oil removal from, 239–241, 240 (figure)
- treatment of, 554–555, 556 (table)

Water
- cooling, 540
- environmental concerns, 540
- formation, 62, 69, 456
- hydraulic fracturing, use in, 241, 326–327
- minimizing consumption, 554–555
- used in oil shale processing, 386

See also produced water

Water drive, 5, 125, 250 (table)

Water flooding
- enhanced, 286
- low-salinity, 291–292
- problems related to, 256
- and reservoir microbiology of, 467
- in secondary oil recovery, 250–251, 252 (figure), 253–255, 254 (figure)
- smart, 701

Water-alternating gas (WAG) process, 270–271, 270 (figure), 271 (figure)
Index

water-based fracturing fluids, 351. See also hydraulic fracturing
water-based mud (WBM), 207
water-oil relative permeability, 73
weather shields, 520
weather-related hazards, 546–547
weight-on-bit (WOB), 197, 198, 201 (figure), 209, 209 (figure)
weir, liquid-level control using, 237, 237 (figure)
well, reservoir, and facility management (WRFM), 701–704, 702 (figure), 703 (figure)
well control, 210–215
casing installation, 211, 213, 213 (figure)
drill rig, 202, 204–205, 205 (figure)
kick detection and shut-in procedures, 213–214
managed pressure drilling, 214 (figure), 214–215, 215 (figure)
mud pressure bounds and casing schedules, 210 (figure), 210–211, 211 (figure), 212 (figure)
and well placement configuration, 254
well logging
correlation of VSP with, 157–159, 157 (figure), 158 (figure), 158 (table), 159–161 (figure), 161 (table)
modeling logs from seismic data, 153–154, 153 (figure)
overview, 11–12, 16–17
Valley Field case study, 161, 162
well monitoring system, drill rig, 205
well performance analysis, gas, 411–414, 411 (figure), 412 (figure), 413 (figure), 413 (table), 414 (figure), 414 (table)
well placement configuration, water flooding, 251, 252 (figure), 253–255, 254 (figure)
well testing (pressure transient testing), 12, 17
well trajectories, directional
basic, 217, 217 (figure)
coordinates, 221–222, 221 (figure), 222 (figure)
measuring, 219
planning trajectory changes, 223, 223 (figure)
terminology, 216–217, 217 (figure), 218 (figure), 219 (figure)
wellbore and outflow performance analysis, 404–411, 409 (table)
wellbore models, numerical reservoir simulation, 186–187, 186 (figure)
wellbore pressure, 210–211, 210 (figure), 211 (figure), 212 (figure)
wellhead, 680, 681
wells
completion of, 680–681
for deepwater systems, 606, 607–609, 608 (figure), 609 (figure)
plugging and abandonment, 581, 585–586, 585 (table), 586 (figure), 591, 593
semisubmersible projects
cost of, 624–625, 626 (table), 627 (table)
development, 619, 620–621 (figure), 622 (figure), 622–623, 622 (table), 623 (figure), 624 (figure), 624 (table)
exploration, 619, 619 (table)
producing, 629, 634 (figure)
reserves, 641, 646 (figure)
well counts, 622, 623 (figure)
in USOSC, 680–681
Western Canadian Sedimentary Basin (WCSB), 303, 304 (figure)
Western Regional Air Partnership, 547
Western States Air Resources Council, 547
wet gas, 3, 68, 68 (figure), 68 (table), 378
wetlands, environmental concerns for, 542
wettability
ASP flooding and, 285
capillary pressure, 69–71, 70 (figure)
terrestrial tension and contact angle, 69
as LSW mechanism, 292
and relative permeability, 73–74, 74 (figure), 74 (table)
relative permeability measurement and, 15
reservoir rock, 71–73, 71 (figure), 72 (figure)
restoration and measurements, 72 (figure), 72–73
wetting phase, 69
wet-tree wells
decommissioning cost, 585, 585 (table), 591
overview, 606, 608, 608 (figure), 609 (figure)
semisubmersible projects, 623, 624 (table)
whiskery crystals, gas hydrates, 444, 444 (figure)
White Sands project, 315
Who Dat project, 654–655. See also semisubmersibles
whole-core analysis, 12, 13, 16
Wien automatic system planning (WASP), 50 (table)
Wilcox trend, 605–606, 607 (figure)
wireline logs, 11–12, 98–100, 219
work breakdown structures, cost estimation, 583
worksite hazards. See occupational hazards; safety
world energy market, 657, 658 (figure). See also energy future
world energy model (WEM), 50 (table)
Y
Yamal crater, 436, 436 (figure)
yet-to-find hydrocarbon resources, 696, 696 (figure)
yield point (YP), drilling fluids, 208, 208 (figure)
yield stress, 91, 91 (figure)
Young-Laplace equation, 69–70, 70 (figure)
Young's modulus, 87, 88 (figure), 95, 99, 99 (figure)
Z
Z-factor, gas, 63, 63 (figure)
zircon fission track, 121
zirconate, 358
zwitterionic surfactants, 278 (table)