Index

A
abnormal situation management (ASM), 724
absorption, 108, 205–206, 254, 292, 323 (figure)
absorption process, 292
acid, 161, 163, 167. See also specific acids
acid corrosion, 440. See also naphthenic acid corrosion
acid dew point, 336
acid gas, 250, 252–254
acid rain, 712 (table)
acid sites, 229–230
active matrix, 146–147
activity-based management (ABM), 739–740, 740 (figure)
additives
fluid catalytic cracking (FCC), 149 (figure), 149–152
fuel, 476–477
gasoline, 476
See also specific additives
Advanced Energy Initiative, 756
advanced process control (APC), 13, 362–364, 375, 689, 744. See also instrumentation; process control
advisory system, 391 (figure)
Africa
crude oil reserves of, 43, 43 (figure), 45 (figure), 46
energy sources and, 770 (table)
natural gas and, 48, 48 (figure), 50 (figure), 51 (figure), 64–65
oil imports and, 774 (table)
refining in, 68–69, 609 (table), 612 (table), 613 (table)
See also specific countries
agricultural feedstock, 752, 754–755, 759–760, 762 (table), 763
agricultural land-use, 751, 752, 766
air cooled exchangers, 328–329, 330 (table)
air fin fan coolers, 413
air grid, 142–143, 143 (figure)
Albermarle technology, 231–232, 232 (table), 234 (table)
algorithms
genetic, 537, 678–682
optimization, 483
See also computer-aided process operations;
mathematical methods
alignment, 397–399, 398 (figure), 399 (figure)
alumina
Al₂O₃, 154, 224
γ-alumina, 236
catalyst technology and, 229–230, 246
American Gas Association (AGA), 558
American Petroleum Institute (API), 80, 89 105 (table), 562–563, 714. See also specific API standards
American Petroleum Institute (API) gravity, 26, 733 (figure)
American Society of Mechanical Engineers (ASME) standards, 550, 551, 561
American Society for Testing and Materials (ASTM), 88. See also specific ASTM standards
amine, 74, 252–254, 253 (figure)
amine sweetening unit, 75 (figure)
ammonium corrosion, 440
ammonium chloride salts (NH₄Cl), 437
amorphous oxide, 163
angular misalignment, 398 (figure)
antiknock compounds, 476
aniline point, 86
anti-icing additives, 476
anode coke, 117
antifriction bearings, 395
APCI single mixed refrigerant process, 268
AP-X® process, 264, 265 (figure)
aquafuel technology, 793–794
aqueous effluents, 702 (table), 703, 704–705 (table), 808 (figure)
area target setting, 663
aromatics, 22–23, 23 (figure), 30, 203, 462 (table), 474, 777–780. See also monoaromatic hydrocarbons;
polyaromatic hydrocarbons (PAHs)
arificial neural nets (ANN), 388, 391, 391 (figure)
Asia
crude oil reserves of, 43, 43 (figure), 45 (figure), 46
diesel fuel quality and, 95
diesel fuel quality and, 95
electricity and, 773 (figure)
energy sources and, 770 (table)
natural gas and, 48 (figure), 50 (figure), 51 (figure), 65
oil imports and, 774 (table)
refining in, 58, 71, 72 (table), 609 (table), 612 (table), 613 (table)
Aquitard MBO (Multi-Blend Optimization), 694 (table)
Aquitard PIMS (Process Industry Modeling System), 694 (table)
Aquitard Technologies, 694–695 (table)
Aquitard XT, 694 (table)
aviation asphalt, 29–30
aviation asphalt, 29–30
association, 23 (figure), 60–61, 109, 179–180, 182 (table), 777–780, 778 (table), 790 (figure)
Association Française de Normalisation (AFNOR), 89
ASTM D975-09a, 95 (table)
ASTM D1655-07, 94 (table)
ASTM D2699, 460, 461
ASTM D7170, 460
ASTM subcommittees, 460
ASTM test methods, 457, 458–459 (table), 460–461, 462 (table)
Athabasca bitumen, 215 (figure), 216 (table)
 atmospheric distillation, 4 (figure), 4 (table), 6, 7 (table), 8 (table), 25–26, 61 (figure), 121 (table), 606 (table)
 atmospheric emissions. See emissions; specific emissions atmospheric residue (AR), 233
 Australia, 94 (table)
 Auto Oil Programme, 92
 automated control systems, 724–725
 automatic tank gauging system (ATGS), 485
 automation. See process automation automation effectiveness index, 494–495
 automation incentives, 516–519
 autothermal reforming (ATR), 277–278, 278 (figure)
 aviation fuel, 95 (table)
 axial compressor, 346

B
 backcasting, 660
 backwashing filter, 351, 352
 balanced scorecard, 735
 baseload plants, 261–262
 basis reflux production (BRP), 664–665
 basket pricing, 588 (table)
 batch distillation, 310–311
 bearing fitting tool kit, 400
 bearings, 395, 400
 behavioral safety, 721
 benchmarking, 733 (figure), 733–734
 benefits model equation, 517
 benzene, 22, 23, 103, 108, 109, 112, 113
 best practice, 733 (table), 733–734, 734 (figure)
 bias, 461, 479, 480 (figure)
 binder pitch, 214
 bioalcohols, 31
 biobutanol, 759
 bio-crudes, 764
 biodiesel (FAME), 19 (table), 31, 54, 65–66, 66 (table), 752
 production of, 757 (table), 759–763, 760 (figure), 761 (figure)
 quality control and, 461
 specifications of, 96, 98 (table), 762 (table)
 bioethanol, 55, 754
 biofuel, 31, 53, 26, 53–54, 747, 750 (figure), 752–753, 753 (figure), 766, 776 (table)
 demand for, 747–749, 749 (figure)
 economics of, 746–766, 765 (figure)
 production of, 54–55, 55 (table)
 regional consumption of, 66 (figure), 66 (table)
 sustainability and, 749–752
 technology, 792–793, 794–795
 for transportation, 753–754, 761 (table)
 See also biodiesel; bioethanol; ethanol
 biogas, 31
 biohydrogen routes, 292
 biomass, 749, 751, 752, 763–764
 characteristics of, 53–54, 776 (table)
 technology, 792–793, 794–795
 See also biodiesel; biofuel; agricultural feedstock biorefineries, 18–19
 biosolid waste, 702 (table), 703
 bitumen reserves, 46, 177, 178 (figure)
 black oils, 24, 25 (table), 26
 blend equation, 483 (figure)
 blend headers, 492–493
 blend nonlinearity, 477–480
 blend water, 758
 blending, 6, 90–91, 120, 457–458, 523–529, 524 (table), 526 (figure), 527 (figure), 528 (figure), 529 (figure)
 biofuels and, 753, 754, 757–759
 configurations, 474 (figure), 484 (table) 485 (figure)
 instrumentation and, 485, 486 (figure), 486 (table)
 models, 477–481, 480 (figure)
 planning and, 491 (figure), 544
 quality analysis and, 487 (figure)
 scheduling, 691, 692, 693
 system, 483–490, 484 (figure), 484 (table), 486 (figure), 488 (figure), 489 (figure), 490 (figure)
 variables, 482
 See also fuel blending
 block flow diagram, 276
 BOG, 269, 270
 boiler fuel, 214
 boiler inspection, 427
 boiling point, 4 (table), 6, 19 (table), 26, 27
 n-alkanes and, 80 (figure)
 properties of, 79, 86 (figure)
 separation process and, 102
 boil-off-gas (BOG), 256
 bolt tensioners, 399
 bonding systems, 404–405
 boot, 344
 Bohpal, India, 717–718
 boroscopic/fiberoscopic inspection, 409
 bottom-of-the-barrel upgrading, 233–237
 box-type reformer, 240–241
 Brazil, 754
 breakdown maintenance, 393
 breech lock exchanger, 413
 bubble cap tray, 318
 bucket and weir, 342, 344
 bullet tank, 499
 burns, 719–720
 busbars, 403
 business process, 732–733, 742, 743 (figure). See also
 markets; process control; refining industry
 butane, 21, 31, 115
 butanol, 31
 butene, 114. See also isobutene
 byproducts, 8 (table), 19. See also petroleum coke; specific products

C
 cables, 403
 cake feed, 118, 119 (table)
 calcinated coke, 98, 99 (table)
 calculated cetane index (CCI), 86, 462 (table)
 California Reformulated Gasoline specifications (CaRFGH), 92
 California, 748–749
 Canada, 46
 crude oil and, 187 (table)
 gasoline quality and, 93–94
heavy oil processing and, 191–192
refining in, 612 (figure)
Canadian tar sand bitumen, 783 (table)
capability assessment, 466 (figure)
capacity cost, 592
capacity creep, 601
capital expenditures (CAPEX), 563
carbon dioxide (CO₂) emissions, 66, 712 (table), 713 (table), 713, 714, 714 (table), 750–751, 775 (figure), 775–776
biofuels and, 749, 751
sulfur and, 119
carbon monoxide, 719
carbon rejection, 9. See also solvent separation; thermal treatment
carbon residue (CR), 86–87
carbon steel, 446
carburization attack, 446–447
cartridge filter, 351, 352
catalyst slide valve, 137 (table)
catalyst, 1, 8, 9, 152, 236 (figure), 239 (figure), 245, 246
bottom-of-the-barrel upgrading and, 233–237
conversion and, 72, 237
design, 147–149, 148 (figure)
desulfurization and, 64, 202–203, 225–227
fixed-bed reactors and, 189–190, 278
fluid catalytic cracking (FCC) and, 129, 142 (figure), 144–149, 146 (figure), 147 (figure), 148 (figure)
hydrodesulfurization (HDS) and, 201, 206, 210, 213, 225 (table), 225–230, 226 (figure), 226 (table), 244–245
hydrogen production and, 239–243
monitoring of, 152–153
properties of, 152 (table), 153–155, 154 (figure)
reforming, 385 (figure)
residuum hydrotreating and, 235 (figure), 235–237, 237 (figure)
solid acid and, 237 (table), 237–239
supports and, 243–246
VGO hydrotreating and, 230–233
See also Co(Ni)-Al₂O₃; specific catalysts; zeolite catalytic conversion, 72, 103, 121, 208 (figure). See also catalyst; desulfurization; fluid catalytic cracking (FCC); hydrodesulfurization; hydrotreating; isomerization catalytic cracking. See fluid catalytic cracking (FCC); hydrocracking; specific cracking methods Catalytic Crude Upgrading (CCU™), 224
catalytic fixed-bed process. See fixed-bed process
catalytic hydrotreating. See hydrotreating
catalytic isomerization. See isomerization catalytic pretreatment, 226–227, 227 (figure). See also fluid catalytic cracking pretreatment (FCC-Pt)
catalytic reforming, 60, 102, 111–113, 113 (figure), 114 (figure), 121 (table), 626 (table), 627. See also catalytic reforming unit (CRU)
catalytic reforming unit (CRU), 383–385
Catalytic Research Associated (CRA), 197
catalytic technology, 232 (table), 233, 380–385. See also specific processes; specific technology
catalytically cracked gasoline (CCG), 198–202, 198 (table), 199 (table), 201 (figure)
hydrodesulfurization (HDS) and, 201–202, 227–228
cautic stress corrosion cracking (SCC), 442–443
cautic sodium hydroxide (NaOH), 442
Central America. See South and Central America
centralized control, 355
centrifugal compressor, 346, 348 (figure)
centrifugal pump, 348–350, 416
cetane index (CI), 203
cetane number (CN), 86, 462 (table), 474–475
CFHT/HyC-10, 207 (table)
C/H ratio, 82
cold filter plugging point (CFPP), 462 (table)
Closed Tag method, 83–84
cold point, 84–85, 85 (table), 462 (table)
CO combustion promoter, 150–151, 152
Co/(Co+Mo) ratio, 225, 226 (figure)
coal, 5 (figure), 5, 23, 52–53, 763, 776 (table)
consumption of, 52–53, 54 (figure)
history of, 35
processing of, 76
production of, 54 (figure)
coal-bed methane (CBM), 42
cobalt, 226 (figure); hydrotreating and, 232
coke combustion, 131–132, 132 (figure); regeneration and, 141–142
coke. See also petroleum coke; specific coke types
coke-laid-down catalyst, 152
coking refineries, 614, 615
coking, 117–119, 118 (table), 119 (table), 121 (table)
cost and, 626 (table)
delayed, 184–185, 184 (figure), 185 (table)
flexi-, 185
fluid, 185, 186 (table)
hydrodesulfurization and, 226–227, 227 (figure)
refineries, 614, 615
cold filter plugging point (CFPP), 462 (table)
Coblebrook equation, 555, 557, 558, 559–560, 568
column commissioning, 319
column inspection, 411
combined reformer, 278
combustion, 150–151, 334–335
commercial catalyst. See catalyst, commercial
commercial scheduling, 544
commercial simulation, 322, 648 (figure)
catalyst, commercial software, 641–643
Co-Mo/γ-Al₂O₃, 225, 229 (figure)
CoMoS phase, 229
companies. See refining companies
complex refineries, 613
complexity index, 625 (table)
compositional analysis, 81–83
compressed natural gas (CNG), 74, 279–281, 549–550
compressibility, 250, 260, 279
compressor, 345–348, 348 (figure), 569
compressor map, 347–348, 348 (figure)
computational approach, 636
computational fluid dynamics (CFD) model, 670
computer-aided process operations, 685, 686–696, 687 (figure)
developments, 693
instrumentation for automation and, 686, 696–698
See also computer process control refining units;
computer systems
computer process control refining units, 357–377, 376 (table), 388–391
catalytic processing and, 380–385
coking, 386–387
hydrocracking and, 385–386
See also computer-aided process operations; computer systems
computer systems, 686
blending and, 490–492
future considerations and, 795–796
personal, 647
pipeline equations and, 554
process operations and, 685, 686–698, 687 (figure)
See also computer-aided process operations; computer systems
corcarbon (CCR), 187, 462 (table)
condition monitoring, 402
conductivity, 309
C-1/2Mo steel, 449
ConocoPhillips, 263–264, 606
Conradson carbon (CCR), 133
consumption. See energy consumption
contaminant control, 230–231, 231 (table), 515
natural gas and, 251–252
technology, 274 (figure), 275 (table)
contamination. See contaminant continuous catalyst regeneration (CCR), 112
continuous compressor, 345, 346. See also compressor continuous distillation column, 312 (figure)
contract pricing, 588 (table)
contracts, 578 (table). See also refining economics
crude overhead units, 437, 438
crude oil refining, 124–125, 380
evolution of, 121–124, 121 (figure), 122 (table), 122 (figure), 123 (figure), 124 (table)
flow and, 102 (figure), 102–103
history of, 101, 121 (figure)
objectives of, 101–102
process of, 103–121, 105 (figure), 106 (figure), 109 (figure), 110 (figure), 112 (figure), 113 (figure), 114 (figure), 115 (figure), 116 (figure), 117 (figure), 597. See also catalytic conversion; fluid catalytic cracking (FCC); specific processes
crude vacuum tower, 382 (table)

See also specific types
corrosion-resistant material, 438, 439
Coselle™, 280
cost. See refining economics
cost control, 739
cost estimation, 621
creaking refineries, 613–614, 614 (figure)
critical equipment, 396
critical vapor locking index (CVLI), 83
crude atmospheric tower, 381 (figure), 381 (table)
crude distillation unit (CDU), 104–107, 106 (figure)
crude oil assays, 89, 90 (table), 660
blending, 524–525, 526 (figure), 527 (figure). See also blending
crude overhead units, 437, 438

See also refining economics
crude oil refining, 124–125, 380
evolution of, 121–124, 121 (figure), 122 (table), 122 (figure), 123 (figure), 124 (table)
flow and, 102 (figure), 102–103
history of, 101, 121 (figure)
objectives of, 101–102
process of, 103–121, 105 (figure), 106 (figure), 109 (figure), 110 (figure), 112 (figure), 113 (figure), 114 (figure), 115 (figure), 116 (figure), 117 (figure), 597. See also catalytic conversion; fluid catalytic cracking (FCC); specific processes
crude overhead units, 437, 438
crude vacuum tower, 382 (table)
cryogenic energy, 271–272, 272 (table)
cryogenic separation, 272, 294–295, 295 (figure), 297 (figure)
cryoscopy method, 81
C3–C4 olefins, 113
C3-MR process, 262–263, 236 (figure)
Cu corrosion, 462 (table)
cubic equation of state, 250–251
culverts, 407
customer relations management (CRM), 464, 469
Cu-Zu-Al type catalysts, 243
cycloalkanes, 22
cyclone device, 345
cyclones, 137 (table), 143, 145 (figure)
cylindrical tanks, 499, 500 (figure), 510 (figure)
DAO, 18
Darcy-Weisbach equation, 552
dead legs, 440–441
deeasphalted oil (DAO), 107, 109–110
deeasphalting, 109–110, 110 (figure), 121 (table), 18
debottlenecking, 666
decane, 166 (table)
decision making, 633, 635, 676, 686, 687 (figure).
See also computer-aided process operations; refinery planning
deeawater projects, 52
dehydration, 255–257, 255 (figure), 256 (table), 257 (figure), 257 (table)
dehydration unit, 255 (figure), 257 (figure)
delayed coker unit, 386–387, 389 (figure), 389 (table)
delayed coking, 117–118, 118 (table), 119 (table), 184–185, 185 (figure), 185 (table)
demand, 3, 598, 599, 773 (figure)
evolution of, 122 (table), 609 (figure)
global, 776
natural gas and, 5–6, 75–76
transportation fuel and, 61–67, 63 (figure), 64 (figure)
See also biodiesel; crude oil; gasoline; natural gas; petroleum; utilization
Demet catalysts, 230, 231
demulsifiers, 476
denitrogenation, 228
density, 80, 203, 462 (table), 506
deposit-control additives, 476
desalting, 6, 25, 103–104, 105 (figure)
desalting units, 306–309, 307 (figure), 308 (figure)
desulfurization, 62–64
cost of, 67
of diesel fuel, 202–203, 227–229
of gas oil, 228–229
reactor, 204–206, 209 (figure)
See also hydodesulfurization (HDS); sulfur content
deterministic model, 637–640, 638 (table), 639 (table), 640 (figure), 642–643
dew point, 27
dewaxing, 108–109, 109 (figure), 121 (table), 172–173, 174
dibenzothiophene (DBTs), 228
diesel, 19 (table), 29, 474–476
catalysts and, 227–230
fuel grades, 94–96, 95 (table), 96 (table)
hydodesulfurization (HDS) and, 202–206, 202–203, 203 (figure), 205 (figure), 245 (figure)
specifications for, 761 (figure)
sulfur content and, 119 (table)
supply and demand, 62–65, 65–66
synthetic, 64–67, 752, 763–764
ultrafave sulfur, 62–64, 792
yield, 224
See also biodiesel; natural gas, as transportation fuel
diesel index (DI), 86
diesel oil, sulfur-free, 229
Dimersol®, 115
dimethyl disulfide (DMDS), 189
dimethylether (DEM), 752, 764
Direct DeSulfurization site (DDS), 210
discrete optimization method, 543
disengagement theory, 337
dissolved gas, 350
distillation, 104–108, 106 (figure), 106 (table), 203, 462 (table), 476, 597
batch, 310–311
biofuel and, 762
capacity, 606, 610
cost of, 626 (table)
extractive, 372–373
flash, 310 (figure)
with reflux, 311–313
temperature, 782 (figure), 783 (figure)
See also distillation columns
distillation column, 106–107, 313 (figure)
design of, 309–313, 311 (figure), 312 (figure)
energy requirements and, 314–315
multicomponent systems and, 313–314, 313 (figure), 315 (figure)
operational aspects and, 317–319
size calculations and, 319–322
tray, 312 (figure), 317 (figure), 318 (figure)
See specific column types; distillation column tray
distillation model, 654–655
distillation point, 474
distillation unit, 62 (figure).
See also atmospheric distillation; distillation column; vacuum distillation
distributed control system (DCS), 355, 366, 489, 686, 687, 688, 698
DMR high performance random packing, 318 (figure)
DMTP high performance random packing, 318 (figure)
downflow distribution devices, 209 (table)
downside risk, 634 (figure), 636
downstream process, 732 (figure)
drag reducers, 476
drainage system, 407
Dranchuk and Abou-Kassem correlation, 568
drill down, 736 (figure)
dry gas, 24
Dual Independent Expandier Refrigeration Cycle (Niche LNG™), 268
dual mixed refrigerant (DMR), 266
DuPont, 479, 480 (figure)
DuPont interaction coefficients, 478–480
dye penetrant test, 408
dyes, 476
dynamic compressor, 346
dynamic model, 65 (figure), 668
dynamic pump, 348
dynamic simulation, 670
INDEX

E
- earthing systems, 404–405
- eddy current examination, 409
- efficiency, 335–336
- ejectors, 346
- electrical systems, 401–406
- electricity generation, 41 (figure)
- electrolysis of water, 291
- electrostatic desalter, 307 (figure)
- elemental analysis, 82–83
- emission reduction, 71, 701, 703, 706 (table), 708, 709, 710 (table), 713–714. See also specific emissions
- emissions, 702, 703, 710–711 (table), 712 (table), 713–714, 714 (table). See also carbon dioxide (CO2) emission; emission reduction; fugitive emissions; greenhouse gas (GHG) emission; nitrogen oxide (NOx) emission; particulate emission; refineries, emissions of; sulfur oxide (SOx) emission
- emulsion stability, 309
- end point (EP). See final boiling point (FBP)
- energy balance, 551–552, 793. See also pipelines, flow equations and
- energy consumption, 601 (figure)
 - current, 35–39, 36 (figure) 37 (figure), 38 (figure), 39 (figure), 40 (figure)
 - biofuel, 66 (figure), 66 (table)
 - chemical, 289 (figure)
 - coal, 52–53, 54 (figure)
 - crude oil, 53 (table), 56–57, 57 (figure), 177, 178 (figure)
 - distillates and, 288 (figure)
 - by fuel, 35, 37 (figure), 38 (table), 38–39
 - future, 39–41, 39 (figure), 40 (figure), 41 (figure)
 - hydrogen, 203
 - natural gas, 72, 74 (figure), 787 (table)
 - regional, 65 (figure)
 - sources, 41 (figure)
 - transportation fuel and, 61–67, 63 (figure), 64 (figure), 65 (figure)
 - See also demand; energy consumption; specific countries; specific regions
- energy dependence, 38 (figure). See also energy balance; energy consumption
- energy efficiency, 39, 735
- energy equivalency, 36
- Energy Independence and Security Act (EISA), 748
- Energy Information Administration (EIA), 617–619
- energy monitoring, 218 (figure)
- energy-saving, 216 (table)
- energy sharing, 216–219, 218 (figure)
- energy supply, 3–6. See also energy balance
- EnerSea, 280
- engineering
 - management and, 745
 - process, 665–668
 - safety and, 724
- environmental impact, 18
- assessment, 709, 713
- fluid catalytic cracking (FCC) and, 224–225
- gasoline and, 91–92
- heavy oil processing and, 181, 183, 185, 190 (table)
- transportation and, 159
 - See also desulfurization; emissions; environmental regulations; hydrosulfurization (HDS); sulfur content
- environmental impact assessment study, 709, 713
- environmental issues, 407, 701–702
- environmental legislation
 - in the European Union, 288 (table), 748
- sulfur content and, 227
- Environmental Protection Agency (EPA), 62
 - diesel regulation and, 119–120
 - gasoline regulation and, 91
 - hazardous chemicals and, 722–723
 - risk management program of, 723–724
- environmental regulation, 62–64, 71–72, 703, 714 (table), 776
 - air pollutants and, 703, 713–714. See also specific emissions
 - aqueous effluents and, 703
 - biofuels and, 748
 - cost and, 701
 - European Union and, 71, 748
 - refineries and, 71–72
 - standards of, 750
 - sulfur and, 119 (table), 119–120, 464
 - transportation fuels and, 777 (figure)
 - wastewater and, 709 (table)
 - See also Environmental Protection Agency (EPA); greenhouse gas emission
- epoxy coating, 408
- equations
 - flow, 551–560, 554 (figure), 556 (figure), 558 (figure), 559 (figure), 565–570, 571–573
 - velocity, 561–562, 563
- equations of state (EOS), 653
- equilibrium catalyst (e-cat), 152–153, 152 (table), 153 (figure), 153 (table), 153–155
- equipment spacing, 726
- equipment, 680 (table)
 - design, 11, 13, 237, 366, 444
 - electrical, 402–406
 - hazardous area, 406
 - inspection, 411 (table)
 - refinery, 399–400, 409–410; test, 467–468
 - troubleshooting and, 666
 - See also instrumentation
- error prediction, 463
- estimation, 628–629
- ethane, 21, 22, 26, 258
- ethanol, 31, 55, 92
- ether, 626 (table), 628
- ethyl alcohol (EtOH), 751, 752 (table), 752, 754, 759
 - blends, 757–758
 - fuel properties of, 756 (table), 76–757
 - handling of, 758–759
- Eureka process, 213–215, 312 (figure), 215 (figure)
- Europe
 - crude oil reserves of, 43, 43 (figure), 45 (figure), 46
 - energy sources and, 770 (table)
- environmental regulations and, 288 (table)
 - gasoline quality and, 92, 93 (table), 288 (table)
 - natural gas reserves of, 48, 48 (figure), 50 (figure), 51 (figure)
 - product imports and, 71, 774 (table)
 - refining in, 70–71, 71 (figure), 103, 123, 609 (table), 610, 612 (table), 613 (table)
 - safety incidents in, 717
European Biofuels Technology Platform, 750–751
European Commission, 95
exchange of futures for potential (EFP), 587 (table)
exchangers, 326–329, 328 (table). See specific types
existing gum, 462 (table)
expected gross refinery margin (EGRM), 636, 640–641
explosion proofing, 725
explosions, 717–718
export-import parity, 590
ExSact™ process, 213
extraction unit, 324 (figure), 325 (figure)
extractive distillation (ED), 372–373, 374 (figure)
ExxonMobil, 197, 623, 625 (table), 695 (table)
hydrodesulfurization (HDS) and, 201–202
hydroisomerization and, 171–173
facility siting, 726
failure analysis techniques, 396–397
failure mode effects analysis (FMEA), 396–397
failure mode effects and critical analysis (FMECA), 396–397
Fanning friction factor, 553–554
fatty acid composition, 757 (table), 760 (figure), 761–762
fault detection, 688, 689
FBA™ process, 21, 212 (figure), 237 (table)
alkalation and, 238
feed. See feedstock
feed nozzle, 136–138, 137 (table), 138 (figure)
feed plate heat exchanger, 413
feedstock, 3, 7 (table), 8 (table), 151 (figure), 661, 662 (table)
agricultural, 752, 754–755, 759–760, 762 (table), 763
density, 132–133, 133 (figure)
desulfurization and, 204
distillation and, 107–108
fluid catalytic cracking (FCC) and, 132 (table), 132–133, 133 (figure), 148
hydrodesulfurization (HDS) and, 203, 228–229, 229 (figure)
oil and, 180–181, 228–229, 229 (figure)
petrochemical, 29, 224
quality, 617 (figure), 660, 777–780. See also crude oil,
quality of refining and, 72, 111–113, 613–614, 614 (figure), 637
residue, 198
selection, 737
testing of, 455, 659
ultra-heavy conversion, 224
See also biomass; cake feed; feed density
Fe-Powder test, 448
fibre reinforced plastic (FBR™), 280, 281 (figure)
50%/50% mixture method, 479–480
filtration, 351–352. See also distillation
final boiling point (FBP), 79
financial reporting, 617–619
financial risk management, 17, 633–634 (figure), 635 (figure), 636 (figure)
finishing process, 102 (figure), 103, 119–120
fire suppression system, 725–726
fired heaters
control, 368–369, 370 (figure)
inspection, 412, 422
first generation biofuels, 753, 765
Fischer-Tropsch (FT) technology, 64, 787, 788–789
fixed absolute pricing mechanism, 586 (table), 588–589
fixed-bed process, 186–189, 188 (figure), 189 (figure), 190 (table), 278
fixed differential pricing, 587 (table)
hex heaters, 331–336, 322 (figure)
fixed lighting installations, 404
fixed operational cost, 591
fixed price, 579 (table), 580 (table), 586 (table), 588–589
fixed roof tank, 499, 513
flame ionization detector (FID), 179
flammability, 85, 718
flange spreaders, 399
flash distillation, 107, 310 (figure), 474
flexicoking, 121 (table), 185
Flixborough, UK, 717
floating absolute pricing mechanism, 586–587, 587–588 (table)
floating liquefied natural gas, 268
floating roof sinking, 515
floating roof tank, 499, 501 (figure), 513–514
flooding, 319
flow rate, 395, 585. See also pipelines, flow equations and fluid catalytic cracking (FCC), 6–7, 97, 111, 112 (figure), 121 (table), 610
additives and, 149 (figure), 149–152
applications of, 155–156
design and, 135–144, 135 (figure), 137 (table), 138 (figure), 139 (figure)
development, 197–198
liquid petroleum gas (LPG) and, 127–128, 131, 135, 148 (figure)
major reactions of, 128–132
operation control and, 372 (figure), 373 (figure)
process of, 127–128, 128 (figure), 134–135, 134 (table), 135
products of, 198–202
reactor-regenerator, 371 (figure)
technology and, 223–225
See also coke; desulfurization; fluid catalytic cracking (FCC) unit; fluid catalytic cracking pretreatment (FCC-PT); gasoline; hydrodesulfurization; specific parts
fluid catalytic cracking (FCC) unit, 136, 137 (table), 138–140, 380–383, 384 (table)
corrosion and, 447
innovation and, 197–198
optimization and, 679–682, 680 (table), 681 (figure), 681 (table)
fluid catalytic cracking pretreatment (FCC-PT), 231–233, 232
fluid coking, 185, 186 (table)
fluidized catalytic reactor control, 370–372, 371 (figure)
foam, 345
FOS, 217–218
food price, 717
formal panel pricing, 588 (table)
formula pricing, 587 (table)
foiling factors, 329
4,6-dimethyldibenzothiophene (4,6-DMDBT), 228–229, 228 (table)
Fourier-transform infrared (FTIR) spectroscopy, 364
fractional distillation, 107
fractionation, 259–260, 260 (figure)
fractons, 26–27, 27 (table)
freeze point, 84, 462 (table)
freeze point, 84, 462 (table)
friction factor, 553–555; gas and, 557–560; liquids and, 555–557
front-end scheduling, 691
fuel, 27–29, 473–476, 476 (figure)
additives, 476–477
quality, 457. See also quality control
shortage, 197
specifications, 67, 91–93, 91 (table), 92 (table), 93 (table), 94 (table), 97 (table)
See also diesel; gasoline; heating oil; jet fuel; liquid petroleum gas (LPG); petroleum coke; residual fuel oil; specific fuels
fuel blending, 14, 15 (figure), 492 (figure), 493–496, 495 (figure), 496 (figure), 497 (figure)
additives, 476–477
modes of, 473–477, 474 (table), 480 (figure)
optimization of, 482–483
quality and, 475, 486–487, 487 (figure), 488 (figure) technology and, 475 (figure), 483–490, 484 (figure), 48 (table), 485 (figure), 486 (figure), 487 (figure), 488 (figure), 489 (figure), 490 (figure), 491 (figure)
fuel cells, 793
fuel coke, 117
fuel system, 291
fuel volatility index (FVI), 83
fugitive emissions, 513–514
functionality, 518
fugibility, 753–754
furnace tubes, 452–453
futures, 580 (table), 587 (table)
G
gas absorption column, 322 (figure)
gas chromatography (GC), 79
gas condensates, 24, 25 (figure)
gas flow, 552–553, 557–560, 558 (table), 559 (figure). See also pipelines, flow equations and gas metering, 271
gas oil, 228–229, 228 (figure)
gas plant, 387–388, 390 (figure), 390 (table)
gas processing, 626 (table), 628
gases, 80
gasification, 291. See also regasification
getter feed, 214
gasoline processing, 111–119, 130 (figure), 130–131, 225–227. See also alkylation; catalytic reforming; coking; fluid catalytic cracking (FCC); hydrocracking; isomerization; polymerization; thermal cracking; visbreaking
gasoline, 27–28, 473–474, 476 (figure)
additives, 476
catalytically cracked (CCG), 198–202, 198 (table), 199 (table), 201 (figure)
environmental protection standards and, 91–92 hydrodesulfurization (HDS) and, 201–202, 227–228 hydroisomerization and, 167, 171–172, 171 (figure), 172 (figure), 173 (figure)
low sulfur, 198–200, 199 (figure)
octane boosting and, 167–171
price of, 67–68, (figure)
quality of, 89–90, 461
specifications, 91–93, 92 (table), 93 (table)
sulfur content and, 90 (figure), 149–150, 150 (table)
See also gasoline processing
gasoline sulfur reduction (GSR) additive, 149–150, 150 (table)
gas-to-liquid (GLT), 274–275, 276 (figure)
plants, 64–65, 277
technology, 787–788
transportation and, 550, 563, 565
gas-to-oil ratio, 24
GC-AED, 198, 199 (figure)
gel permeation chromatography, 80
GEMMS, 695 (table)
geographical distribution of biofuel, 53–55, 55 (figure)
of coal, 52–53
of conventional oil, 42, 44 (figure), 45 (figure), 46 (figure)
of crude oil, 51–52, 52 (figure), 53 (figure), 56 (figure), 56 (table), 61 (figure)
of natural gas, 52, 53 (figure), 54 (figure), 56 (figure), 56 (table)
reserves/production ratio and, 55–57, 56 (table), 57 (figure)
of unconventional oils, 33, 46
Germany, 760
 glands, 403
Go-finding, 207 (table)
government regulation, 41, 62–64, 71. See also environmental regulation
GPSA K value, 337 (table)
gravity, 80, 618 (figure)
green cokes, 98, 99 (table)
green diesel, 795. See also biodiesel
Green Paper, 748
greenhouse gas (GHG) emission, 65, 750–751, 751 (figure) reduction of, 751–752, 752 (table).
See also emissions reduction
refinery impacts on, 71–72; standards, 71
See also carbon dioxide (CO2) emissions; emission standards; environmental regulation; specific emissions
gross refinery margin (GRM), 631, 640. See also estimated gross refinery margin (EGRM)
guard-bed catalyst, 230–231, 231 (table)
gunite vessel, 412
H
H2S, 225 (figure), 225 (table), 226 (figure), 226 (table), 438
H2S/NH3 inhibition, 210
hardness test, 409
Hardy Cross method, 567
Haverly Systems (HIS), 694 (table)
hazardous area equipment, 406
hazardous waste, 703
hazards. See safety issues, hazards and Hazen-Williams correlation, 55–557, 556 (table)
HDM, 235 (figure), 235–237
heat exchange, 240, 262. See also heat exchanger; heat exchanger network (HEN)
heat exchanger, 326–328, 328 (table), 330 (table), 368
inspection of, 410, 412–413, 414, 424
mathematical methods and, 534–535
heat exchanger network (HEN), 104–105, 106 (figure), 216, 536 (figure)
heater tubes, 446
heating coils, 329–331
heating oil, 29, 96
heating value, 251
heavy crude, 26, 177, 178 (figure), 778.
See also heavy oil
heavy fraction (HCCG), 198, 199 (figure)
heavy gas oil (HGA), 107
heavy oil, 2 (figure), 89, 380
- challenges of, 9
- molecular weight and, 25 (figure)
- processing of, 57–58, 60–61, 191
- refining of, 6, 9 (figure)
- reserves, 33, 46, 46 (figure)
- residue and, 3 (table), 9 (figure)
- upgrading, 191
heavy residue, 3 (table), 6
heavy vacuum gas oil (HVGO), 107, 445, 451–452
heavy-oil, 177–179, 178 (figure)
- characteristics of, 187 (table), 188 (table)
- upgrading, 181–193, 183 (table), 184 (figure), 185 (table), 186 (figure)
See also asphaltene
heptane, 162–164
heteroatom compounds, 9, 119
heteroatom removal, 9. See also hydrotreating
heterogeneously catalyzed hydodesulfurization (HDS), 120
heteropoly acid, 163
HETP, 320–321
HEXSORB, 168, 169
high-pressure liquid chromatography (HPLC), 82, 179. See also liquid chromatography (LC)
high-pressure separator (HPS), 127–128
high-temperature hydrogen attack, 445–446, 446 (figure)
high-temperature sulfide corrosion, 443–444
Honeywell Process Solutions, 694 (table)
human resources, 746. See also workforce
hybrid systems, 295, 296 (figure), 297 (figure)
HYCON, 190, 191 (figure)
hydrates, 2
hydraulic nut splitter, 399–400
hydraulic torque wrenches, 399
hydraulics planning, 691
hydrocarbon
- characteristics of, 1, 2, 7 (table), 21
- resource classification, 41–42, 42 (figure)
See also aromatics; olefins; paraffins; naphthenes
hydrocarbon conductivity, 309
hydrocarbon group analysis, 179
Hydrocarbon Processing, 621
hydrocracking, 60, 103, 116, 117 (figure), 121 (table), 159
- heavy crude and, 186–190, 189 (figure), 189 (table), 216, 536 (figure)
- pretreater, 233
- unit, 385–386, 387 (figure), 388 (table), 795
hydrodealkylation (HDA), 208, 210
hydrodemetallation (HDM), 187–190, 245–246
hydrodenitrogenation (HDN), 120, 208, 210
hydrodesulfurization (HDS), 121 (table), 187, 189–190
- active site and, 226
- catalysts and, 245. See also specific catalysts; zeolite catalytically cracked gasoline and, 201–202, 226–227
- deep, 227–228
- units, 203–207, 204 (figure), 209 (figure)
See also desulfurization; hydroprocessing; VGO
- hydrotreating
hydrofluoric acid, 114
hydrogen, 7 (table), 302, 793
- balance, 287
- to-carbon ratio, 2, 5, 10
- coal and, 5
- consumption, 203
- crude oil and, 2–3
- management of, 10–11
- network targeting and, 296–300
- petroleum refineries and, 10–11
- plant, 13 (figure), 300–302
- production, 13 (figure), 103, 288–292, 290 (figure), 291 (figure)
- purification, 292–295
- surplus, 299 (figure)
- transportation, 295–296
See also hydrogen plants; hydroisomerization
hydrogen addition, 9. See also catalytic hydrogenation; hydrocracking
hydrogen attack, 445–446, 446 (figure)
hydrogen blister, 439
hydrogen composite curves, 297, 298 (figure)
hydrogen induced-cracking (HIC), 439
hydrogen pinch concept, 296–300
hydrogen plants, 289–291, 290 (figure), 291 (figure), 293 (figure), 294 (figure), 296 (figure), 297 (figure), 301 (figure), 302 (figure). See also pressure swing adsorption
hydrogen sulfide, 23
hydrogen surplus curve, 297, 300 (figure)
hydrogen transfer (HT), 150
hydrogenated vegetable oils (HVOs), 752, 762 (table), 763
hydrogenation, 121 (table)
hydroisomerization, 9, 12 (figure), 159–166, 161 (figure), 164 (table), 166 (table), 170 (figure), 171 (figure), 171–174, 172 (figure), 173 (figure)
- base oil and, 171–173
- catalysts and, 160–167, 162 (table), 164 (table), 166 (table), 167 (table), 168 (figure), 168 (table), 174
- gasoline and, 167–171
- thermodynamics and, 159–160
See also catalyst chemistry; thermodynamics
hydroprocessing, 64, 452
- units, 442
- vacuum gas oil (VGO) and, 207 (table) 207–210, 207.
See also hydrodesulfurization
"hydroskimming" refineries, 613
hydrostatic testing, 409, 412–413
hydrodesulfurization (HDS), 198–202, 199 (table), 201 (figure)
- diesel fuel and, 202–206
See also sulfur content; sulfur removal
hydrotreater, 369–370
INDEX

hydrotreating, 119–120, 133–134, 134 (table), 627
capacity and, 610, 611
cost of, 626 (table)
particulates and, 230
HYSOMER process, 168

I
import terminal, 269 (figure), 272 (figure)
impurities, 21, 25
natural gas and, 74. See also natural gas, processing of
See also acids; alcohols; aromatics; detergents; polymers
in situ metallography, 409
incident prevention, 738
India
consumption and, 776
gasoline and, 92–93, 93 (table)
refining in, 71
safety incidents in, 717–718
induction heater, 400
industry reporting, 41
inert gas, 256–257
inerting, 725
information technology (IT), 685, 698, 741. See also computer-aided process operation; computer systems; software
infrared (IR) thermography, 395
Ingenious, Inc., 695 (table)
inhibitor sweetening, 121 (table)
inlet device, 344–351
inline blenders, 475 (figure), 495 (figure)
inline gasoline batch blender, 475 (figure)
input streams, 612–613
inspection. See refinery inspection
Institute François du Petrol (IFP), 792
instrumentation, 355
advances in, 366, 368
for automation, 696–698
blending and, 485, 486 (figure)
maintenance, 406–407, 435
reliability and, 366–368, 396, 466–467
See also equipment; measuring instruments, refinery; process control
insulation, 407
insulation resistance test, 403
integrated gasification combined cycle (IGCC), 795
integrity audits, 738
interaction coefficient values, 480
intermediate fluid vaporizer (IFV), 270
intermediate precision, 461
intermediate streams, 107
intermittent compressor, 345. See also compressor
International Energy Agency (IEA), 749, 750
International Organization for Standardization (ISO), 88
Invensys Production Management, 695 (table)
inventory calculation, 507–510, 508 (figure), 509 (figure)
inventory policy, 679, 681, 682
inverters, 405
investment, 619, 621
IPSORB, 168, 169
isobutane, 210–211
isobutene, 113, 114, 115
ISOCRACKING, 207 (table), 208, 210
ISODEWAXING®, 172, 173 (figure)
isomer, 21, 22
isomerization, 103, 115–116, 116 (figure), 121 (table), 159, 171 (table), 628
cost and, 626 (table)
light naphtha and, 160–165, 168 (table)
long chain paraffins and, 165–171
See also hydroisomerization
isoolesfin HG active site, 226
ISOP catalyst, 239–241, 240 (figure), 240 (table), 241 (table)
isoparaffins, 21, 86 (figure), 113
isothermal flow, 570–571
IsTerming, 207 (table), 208
Japan, 216–219
jet fuel, 94
J-T expansion, 258

K
KBR FCC configuration, 136 (figure)
Kellogg Orthoflow™, 141–142
kerosene, 28–29, 101, 107, 651 (figure)
Ketjenfine 757, 231
Ketjenfine 848, 232, 233 (figure)
Ketjenfine KG 542-9R/-5R, 230
Ketjenfine KG 647, 231
Ketjenfine KG-1, 231
Ketjenfine KG 6, 231
Ketjenfine KG-55, 230
key performance indicators (KPIs), 466, 734–736
kinematic viscosity, 84
kinetic reactor model, 655, 661, 662
Knutsen CNG ship, 281 (figure)

L
L/D ratios, 340 (table)
labor cost, 593 (table)
labor safety, 721. See also refineries, safety and laboratories
cost and, 511 (figure)
operations of, 744
testing and, 463–464
See also laboratory information management system (LIMS)
laboratory information management system (LIMS), 465, 466
landfill, 796
laser beam alignment, 399 (figure)
lead, 712 (table)
leadership, 729–730
leak test, 409
leaks, 515
licensors, 181, 183, 185
life cycle assessment (LCA), 713, 751
light crude oil (LCO), 25 (figure), 116
light distillates, 116, 288 (figure). See also specific distillates
light gas oil (LGO), 107
light vacuum gas oil (LVGO), 107
linear model, 658
linear programming, 532, 657, 659–664, 692
Linear Theory method, 567–568
INDEX 811

line-up errors, 515
liquefaction, 261–267, 262 (figure), 263 (figure), 264 (figure), 265 (figure) liquefaction plants, 72–73, 259, 262 (figure), 277 (table) Liquefin™ process, 264–265, 265 (figure) liquid chromatography (LC), 82, 177–179 liquid flow, 552, 555–557, 556 (figure), 557 (table) liquid hold-up, 338 (table) liquid hydrocarbons: measurement of, 80. See also specific hydrocarbons liquid-liquid extraction, 323. See also separators liquid natural gas. See natural gas liquids (NGL) liquid petroleum gas (LPG), 27, 31, 91 (table), 119, 127–128, 131, 156 liquid-ring compressor, 346 LNG Smart®, 268 long-chained molecules, 370. See also fluidized catalytic reactor control long-term contracts, 578 (table) Louisiana, 623, 625 (table) “Low Carbon Fuel Standard” (LCFS), 748–749 low-temperature operability, 474 low-temperature separation, 257–258 low temperature shift (LTS) catalyst, 242 LPG. See liquid petroleum gas lube oil, 160, 173 (figure), 525, 544 lubricating oil, 29, 109, 394–395, 626 (table), 628 lubricity, 462 (table), 477 lumped bias, 479, 480 (figure) lumping methodologies, 650–652

M magnetic particle testing, 408–409 main-bed hydrotreating, 231–233 maintenance. See refinery maintenance; instrumentation, maintenance and; specific forms of maintenance maintenance costs. See refinery maintenance, cost and management information system (MIS), 542. See also refinery management management of change, 736–737 management strategy, 730 (figure), 730–732, 731–732 (table), 740. See also refinery management Manager for Interactive Modeling Interface (MIMI), 695 (table) Manning correlation, 556 (table), 557 marine diesel fuel, 96, 96 (table) marine terminal, 523 marker crude oil, 580 (table), 581 (table) markets, 17, 774–775 analysis of, 776 crude oil trading and, 577–580, 578 (table) drivers of, 774–777 gas-to-liquid process and, 275 pricing and, 580 (table), 580–581, 582–583 (table), 583 (figure), 584 (table), 585 (table), 586 (table), 587–588 (table), 585–589 products and, 589, 614 See also products, pricing of; pricing Markov decision process, 635–636 marshaled energy, 720 mass spectrometry (MS), 82 MAT/FST unit, 153 mathematical methods, 532–538 algorithms and, 483, 537, 678–682 flow equations and, 551–560, 554 (figure), 556 (figure), 558 (table), 559 (figure), 565–570, 571–573 scheduling and, 542–543 See also equations Maya heavy crude, 188 (table), 781 (figure), 782 (figure) mean time between failure (MTBF), 397 mean time to repair (MTTR), 397 measurement, 79–81. See also specific types of measurement measuring instruments, 358–360 (table), 364–366 mechanical puller, 400 melting point, 84 membrane separation, 74–75, 75 (figure), 292–293, 294 (figure), 295 mercury, 256 Meros process, 119 mesoporous material, 166–167 (table) metal deactivators, 476 metal salt, 163 metallic constituents, 82–83 metals, 160, 394 (table), 778. See also specific metals methane, 10, 26, 72–73, 249 coal-bed, 42 natural gas hydrate and, 282 (figure) See also natural gas methanol, 764 methanol-to-gasoline process, 789 Mexico, 612 (table) MFC Linde process, 266–267, 267 (figure) middle distillates, 6, 9, 116 consumption of, 288 (figure) demand for, 62, 64, 64 (figure) See also specific distillates Middle East crude oil reserves and, 33, 34 (figure), 43, 43 (figure), 44 (figure), 46 natural gas reserves and, 48 (figure), 49 (figure), 51 (figure) refining in, 69, 69 (figure), 609 (table), 612 (table), 613 (table) See also specific countries milling, 754–755 minimum number calculation, 313 minimum reflux, 313 mixed refrigerant processes, 266–268. See also specific processes mixed silica-alumina (MSA), 163 mixed-flow compressor, 346 Mizushima, 217 Mo03, 163–164 Mochida, 210, 211 (figure) model calibration, 655 model development, 648–649. See also refinery modeling; simulation model modeling trends, 669–670 molecular simulation, 670 molecular weight, 80–81 molybdenum, 163–164 monitoring points, 410 monoaromatic hydrocarbons, 23 mono-olefins, 22 Monte Carlo simulation, 675–678, 679
Moody friction factor, 554, 555, 556 (table), 557
MoS₂, 232–233
motor current monitoring, 395–396
motor fuel, 237–239
MSDW™, 172
mud wash, 309
Multi State Mixed Refrigerant process (LiMuM), 268
multifunction gauging system, 505 (figure), 506 (table), 506–507
multiheader crude blending, 526 (figure)
multiheader distillate run-down blender, 457 (figure)
multiphase flow, 563–565, 564 (figure), 569
multiple operator interfaces, 515
multiplexed sampling system, 487
multiunit refinery model, 666–667
multivariable control (MVC), 375, 376 (table)
multivariable predictive control (MVPC) technology, 375–377, 376 (figure), 377 (figure), 378 (figure), 380
atmospheric processing and, 381 (figure), 383 (table), catalytic processing and, 383 (figure), 385 (figure), 386 (table)
crude vacuum processing and, 382 (table)
delayed coking and, 389 (figure), 389 (table)
fractional distillation (FD) and, 387 (table), 388 (figure), 388 (table)
gas plant and, 387–388, 390 (figure), 390 (table)
hydrotreating and, 387 (figure), 387 (table), 388 (figure), 388 (table)
variables, 381 (figure), 381 (table), 382 (table), 384 (table), 386 (table), 388 (table), 389 (table), 390 (table)
Murfrees efficiency, 315
Muse, Stancil, & Co., 620 (figure)
nanoparticles, 243–244, 246
naphtha complex, 667
naphtha, 29, 107
blending, 525–528, 528 (figure), 529 (figure)
isomerization and, 160–165
sulfur and, 119
naphthenes, 22, 174
naphthenic acid corrosion, 444–445, 447, 449, 451–452
National Institute of Occupational Safety and Health (NIOSH), 724
natural gas, 72–73, 763, 776 (table), 785 (table)
applications of, 78 (figure)
conditioning and, 251–257, 253 (figure), 255 (figure), 256 (table), 257 (figure)
consumption of, 31, 72, 74 (figure), 787 (table)
conventional, reserves of, 33, 46–48, 48 (figure), 49 (figure), 50 (figure), 55–56, 56 (figure), 249, 250 (figure)
definition of, 1–2, 2 (figure), 9, 10
demand for, 5–6, 9, 75–76
fraction and, 259–260, 260 (figure)
hydrates, 281
gas-to-liquids (GLT) and, 284, 282 (figure), 283 (figure), 786–787
liquefaction of, 251 (figure), 261–267, 262 (figure, 263 (figure), 264 (figure), 265 (figure), 266 (figure)
molecular weight and, 25 (figure)
pricing and, 787 (figure)
processing of, 9–10, 11–13, 11 (figure), 12 (figure), 19, 72–75, 74 (figure), 784, 785–786, 788 (figure)
properties of, 23, 42, 249–251, 250 (table), 251 (table), 258 (figure)
production of, 3, 13 (figure), 257–259
refineries, 252 (figure), 253 (figure)
regasification and, 268–270
regional realities of, 73 (figure)
storage of, 273–274, 274 (figure), 275 (figure)
technology and, 786 (figure)
thermodynamic properties and, 250
transportation, 249, 260–261, 269 (figure), 279–281, 288 (figure), 549–550
as transportation fuel, 66–67, 7 (figure)
unconventional, reserves of, 42, 48–51, 51 (figure).
See also coal-bed methane (CBM)
See also Natural gas hydrates (NGH); natural gas liquids (NGL); natural gas processing
Natural gas hydrates (NGH), 270–273, 281. See also compressed natural gas (CNG); gas-to-liquids (GLT); natural gas liquids (NGL); natural gas processing
natural gas liquids (NGL), 9, 10, 31, 73–74
process of, 261–267, 262 (figure), 263 (figure), 264 (figure), 265 (figure), 266 (figure)
regasification and, 268–270
storage and, 273–274, 273 (table), 274 (figure), 274 (table), 275 (figure), 275 (table).
See also tank transportation of, 549
vaporization and, 270–273
See also gas-to-liquids (GLT); natural gas natural gas processing, 11–14, 784, 784, 788 (figure), 789.
See also natural gas, processing of; refineries
natural gas vehicles, 67 (figure)
near infrared spectroscopy (NIS), 82, 364–366
Nebula technology, 233
Nelson-Farrar, 624 (table)
net positive suction head (NPSH), 348, 350–351
network targeting, 296–300
New Zealand, 94 (table)
Newton-Raphson method, 567, 568
nickel, 154–155, 230–231
nickle-based alloy, 442
NIR spectroscopy, 697–698
nitrogen, 229, 781 (figure)
nitrogen oxide (NOₓ) emission, 225, 336, 703, 712 (table), 751
nitrogen reduction, 336
NLP-based optimization, 532–536
noble-metal-based water-gas shift (WGS) catalyst, 242–243
nodes, 566
noise, 395
noise pollution, 706, 708–709
noncatalytic POX, 277 (figure)
noncooling process, 258
noncritical equipment, 396
nondestructive examination, 414
nonfuel products, 29–31, 30 (figure).
See also asphalt; lubricating oil; naphthas; petrochemical feedstock;
petroleum coke; solvent; waxes
nonhydrocarbons, 291–292
nonlinear model, 477–478, 660–665
normal boiling point. See boiling point
North America
conventional natural gas reserves of, 48 (figure), 49 (figure), 51 (figure)
crude oil reserves of, 43 (figure), 44 (figure), 46
energy sources and, 770 (table)
refining in, 69–70, 70 (figure), 609 (table), 612 (table), 613 (table)
See also specific countries
NOx reduction additive, 151–152, 151 (figure)
NYMEX, 585
objective function, 482–483, 483 (figure), 682 (table)
objective value, 678 (figure)
OCR, 189
OCR/UFR-RDS process, 234 (table)
See also blending
octane number, 85, 86 (table), 103, 113, 473
tank farms and, 511–512, 512 (figure)
online analyzers, 650
on-shift process optimization, 658
on-site and off-site operations, 14 (figure), 15 (figure), 743–744
on-stream inspection, 410 (table), 429–434
open rack vaporizer (ORV), 270 (figure)
operate environmental units, 744
operate utilities, 744
operational efficiency (OE), 397
operations management, 742
operator training simulators, 669
operations support, 744
opportunity value (OV), 635, 641 (table), 642 (table), 643 (table)
OPTI, 192–193, 193 (figure)
optimization, 482–483, 531, 536–537, 543, 643–644, 667
algorithms, 483
challenges of, 538
lend control and, 488–491, 489 (figure), 490 (figure)
maintenance and, 678
methods, 538–539, 664 (figure)
offline, 489, 490 (figure)
planning tools and, 658–665. See also simulation tools; specific tools
real-time, 689–691, 691 (table)
scheduling and, 691
software and, 690, 691 (table)
variables, 531
See also refineries, scheduling and
Optimized Cascade process, 263–264, 264 (figure)
Organization of Petroleum Exporting Countries (OPEC), 33
Orinoco Oil Belt, 193 (table)
OSHA, 720, 721, 722
overall process effectiveness, (OPE), 397
overhead corrosion, 437–438
oxidation, 206, 277, 288, 462 (table)
oxidation inhibitors, 476
ozone, 712 (table)
P packed columns, 320–321, 321 (figure)
packed towers, 319
packing, 319
PAD district, 607, 608 (table)
paints, 408
pall rings, 318 (figure)
panhandle equations, 557, 558, 559
paper markets, 578–580, 579 (table), 580 (table)
paraffins, 21–22, 22 (figure)
fluid catalytic cracking (FCC) and, 198
hydroisomerization and, 159–160, 163
isomerization and, 165–167
RON of, 160
parallel mixed refrigerant (PMR), 266
Par-Isom process, 115–116, 116 (figure), 169, 170 (figure)
particle size distribution (PSD), 153
particulate emission, 225, 712 (table)
peak oil, 52–53, 53 (figure)
PEFCs, 243
performance monitoring, 397, 737–738
permeability, 294 (table)
permit-to-work system, 721–722
PETRO LP, 695 (table)
petrol. See gasoline
petroleum
definition of, 1, 2 (figure)
formation process, 1–2, 21
history of, 1, 8 (table), 772–774
refining of, 6–9, 8 (table), 10 (figure), 19–20. See also refineries
See also crude oil; products; specific types; specific products
petroleum coke, 29, 30
fluid catalytic cracking and, 130, 131, 147–148
production of, 117–119
properties of, 97–98, 117 (figure)
quality of, 118, 118 (table)
See also specific types
petroleum cuts, 27. See also products
petroleum fractions, 81–82, 98–99
petroleum products. See products
Petroleum Resources Management System (PRMS), 42
petroleum streams, 649
photovoltaic energy, 793
physical markets, 577–578
PINA, 81
pinch technology, 216–219
pipeline terminal, 523
pipelines
 ASME specifications and, 550, 551
cost and, 563, 561
design, 560–563
flow considerations, 563–565, 564 (figure)
flow equations and, 551–560, 554 (figure), 556 (figure), 558 (table), 559 (figure), 565–570, 571–573
hydrogen and, 295
natural gas and, 260–261
networks, 565–570, 566 (figure), 568 (figure)
inspection of, 428
standards of, 550 (table), 550–551
temperature profiles and, 570–573
terminals and, 523
pipelines-to-tanks crude blending, 526 (figure)
piping, 410, 725
pitch, 213, 214 (table)
planned inspection, 410
planning headquarters (HQ), 664
planning, 16 (figure), 16–17, 539, 540, 657 (table), 657–658, 664
plants. See baseload plants; biorefineries; gas plant; gas-to-liquid plants; hydrogen plants; liquefaction plants; natural gas processing plants; refineries; refinery economics; tank farm
plate exchangers, 326
PLATOFORM, 695 (table)
platts, 585
PLEX technology, 208
Poiseuille’s law, 554, 556 (table)
polyaromatic aromatic hydrocarbons (PAHs), 23, 81, 99, 203
polymer electrolyte fuel cells (PEFCs), 241
polymerization process, 103, 114–115, 115 (figure), 121 (table)
polypropylene, 193, 193 (table). See also catalyst, commercial
polythionic acid stress corrosion cracking (PTA SCC), 441, 451
positive displacement pump, 348, 350–351
pour point, 84, 85 (table), 203
power transformers, 403
precision, 461, 470
precoat filter, 351–352
predictive control, 362
predictive maintenance, 394
preheat exchange control, 369 (figure)
pressure, 395, 506
pressure drop, 329 (table), 553
pressure swing adsorption (SPA), 289–291, 290 (figure), 292, 295, 297 (figure)
pressured natural gas (PNG®), 281
pretreatment, 226–227, 227 (figure), 231
preventative maintenance, 393, 416, 675. See also refinery maintenance
prevention methods. See corrosion, prevention and price reporting journals, 585
price variation, 67–68
price, 3, 581–585
agreements, 585
crude oil and, 580 (table), 580, 581, 582–583 (table), 583 (figure), 584 (table), 585 (table), 585–589, 586 (table), 587–588 (table)
differentials, 587–588 (table), 588–589
information sources for, 585, 590–591
mechanisms, 585–589, 586–587 (table), 589 (table)
models, 637–641, 638 (table), 639 (table), 640 (figure)
products and, 589–591, 590 (table), 614–615, 615 (figure), 636, 637–638, 639 (figure). See also markets; refinery economics
PRIC®, 268
process alarm management, 366
process automation, 686, 687–688
instrumentation and, 686, 696–698
offsite, 691
case studies, 368–373
distributed, 698
planning and, 691–696, 694–695 (table)
real-time optimization (RTO) and, 689–691
reliability and, 366–368
See also computer-aided process operations; process automation; process control
process modeling, 693–698, 694–695 (table)
process parameters, 395
process safety, 722–723
process simulation. See simulation model
processing technologies, 621–623, 622 (table)
processing
 capacity, 58–60, 62 (figure)
cost of, 625–628, 626 (table), 627 (figure)
See also refinery economics
production control, 665
products, 3, 4 (figure), 4 (table), 5, 7 (table), 15 (figure), 16 (figure), 17, 124, 772 (table), 778 (figure)
Alaskan crude oil and, 28 (figure)
analysis of, 14, 457–465, 462 (table)
atmospheric distillation and, 4 (figure), 61 (figure), 6 bio-based, 18–19
distribution of, 61–72, 605 (table), 606 (figure), 606 (table), 607, 611 (table)
future of, 796
import-export of, 63
mixed, 10
natural gas and, 31
pricing of, 584 (table), 589–591, 590 (table), 614–615, 615 (figure), 636, 637–638, 639 (figure). See also pricing, products and; refinery economics
quality of, 89–91, 132–134, 133 (figure), 134 (figure).
See also quality control
regional consumption of, 65 (figure). See also consumption specifications, 458, 460
supply and demand for, 598–599, 599 (figure), 560 (figure). See also demand; supply
test methods, 457, 458–459 (table), 460–463, 462 (table)
upgrading, 267. See also upgrading
yield, 134 (table), 135 (table), 602 (table)
See also blending; byproducts; fuel products; nonfuel products; products; specific products
proficiency test, 468
programmable logic controller (PLC), 489, 686–687, 687–688
programming, 631, 633,662–663, 663 (figure), 664 (figure)
propane, 21, 258
propene, 22, 114
ProPlan, 695 (table)
proportional integral derivative (PID), 375, 376 (table), 380
propylene, 31, 158, 198
ProSched, 695 (table)
PSA cycle, 293 (figure)
Pt, 242, 243
Pt/alumina, 164–165, 164 (table), 166 (table)
Pt/CeO₂, 242, 243
Pt/TiO₂, 242, 243
pump, 348–351, 349 (figure), 351 (table), 569
pump around heat exchanger, 368
pump curve, 349
pump inspection, 417
pumpout system, 269
pure vegetable oils (PVOs), 752, 765 (figure)
purging, 725
purification process, 292–295. See also distillation
purifiers, 300
purity tradeoff, 297–298
Q
quality audit, 469–470
quality control, 14, 19, 455–457, 465 (figure), 465–470, 468 (figure), 470 (table), 471 (table)
 blending and, 486–487, 487 (figure), 488 (figure)
 planning and, 658
 process units and, 697 (table)
quality cost, 469, 471
quality giveaway, 455–456, 471 (table)
quality measuring instruments, 364–366
R
radiography, 409
rag formation, 309
rag processing, 309
railcar terminal, 523
rare earth, 154, 224
reaction network, 652 (figure)
reactor
desulfurization, 204–206, 209 (figure)
 fluid catalytic cracking (FCC) and, 371 (figure), 371–372
 residua thermal cracking, 214
reactor effluent air cooler (REAC), 440
reactor model, 655 (figure), 655–656
reactor-regenerator, 371 (figure), 372
real-time optimization (RTO), 689–692, 691 (table)
reciprocating pump, 350–351, 350 (table)
reduction additive, 149–150, 151–152
reference pricing, 580–581
refineries, 8 (table), 17–18, 59 (figure), 59 (table), 46 (figure), 638 (figure)
 automation and, 687–688, 696–698
 configuration and, 122–123, 502 (figure), 503 (table)
 distribution of, 68–71. See also specific regions
 emissions and environmental issues of, 18, 71–72, 292 (table), 513–514, 616, 706 (table). See also refinery pollutants
energy consumption in, 17, 616, 619 (figure)
equipment and, 358–360 (table), 364–366, 399–400, 409–410
future of, 9, 10 (figure)
management and, 17–18
margins and, 57, 469, 471. See also refinery economics
material problems and, 451–453
natural gas, 252 (figure), 253 (figure)
offsite operations of, 14 (figure), 15 (figure), 15–16
planning and scheduling for, 16–17, 657 (table), 657–658, 677, 691–696
products, 4 (figure), 4 (table), 7 (table), 103. See also products
safety and, 14, 467–468, 513–514, 677, 687, 696–698, 746. See also safety issues
scheduling and, 531–544, 541 (figure), 541 (table), 544 (table), 677. See also scheduling
technology, 9 (figure), 598 (table), 621–623, 780–784, 790, 792
See also baseload plants; biorefineries; gas-to-liquid plants; gas plant; hydrogen plants; liquefaction plants; natural gas processing plants; refineries; quality control; refinery capacity; refinery inspection; refinery maintenance; refinery management; refinery modeling; refinery planning; refinery economics; refining industry; refining processes; tank; tank farm
Refinery and Petrochemical Modeling System (RPMS), 694 (table)
refinery capacity, 58–60, 58 (figure), 59 (figure), 59 (table), 60 (figure), 60 (table), 61 (figure), 62 (figure), 64, 68
 global, 609–611, 611 (figure), 611 (table), 612 (figure)
 regional statistics and, 607–608, 609 (table), 610 (figure)
in the United States, 600–604, 603 (figure), 604 (figure)
refinery economics, 17, 67–68, 614, 617–621, 636, 774
 blending and, 494, 495 (figure)
 biofuels and, 746–766, 765 (figure)
 capital cost, 592, 594 (table)
 cost control and, 739
 environmental regulation and, 701
 financial risk management and, 632–633, 641 (table)
 labor cost, 593 (table)
 loss and, 679–680
 margins and profits and, 592–593, 594 (figure), 595 (table), 619, 620 (figure), 620 (table). See also refining planning
 operating and, 124, 591 (table), 589, 591 (figure), 591 (table), 591–592, 593 (table), 594 (figure), 595 (table), 611, 615, 612, 621 (figure)
 pipelines and, 563
 process cost function and, 625–628, 626 (table), 627 (figure)
 supply and, 591 (figure), 592 (figure)
 tank operation and, 516
See also oil price; products, price of; price variation; pricing
refinery inspection, 13–14, 402–406, 408–415, 410 (table), 411 (table), 413 (table), 447
criteria, 410–411
documentation, 414–415, 433
tools, 411 (table). See also quality control
refinery maintenance, 13, 16 (figure), 17, 393–401, 675–676
cost and, 594 (table), 676–677
civil, 407–408
electrical systems and, 401–401. See also electrical systems
instrumentation and, 406–407, 435 (table), 340
management and, 736 (table), 739 (table)
performance measurement and, 733 (figure), 733 (table), 733–736, 734 (figure), 735 (figure)
personnel and, 729–730, 741–742
strategy and, 730 (figure), 730–732, 731–732 (table), 735 (figure), 736–737
support aspects and, 737–742
See also instrumentation, maintenance and; specific forms of maintenance
refinery modeling, 649 (figure), 656–658, 660 (figure), 669–670
design and, 665–666
development and, 649, 653–654
model components, 652–653, 645–656, 63 (figure), 655 (figure), 656 (figure), 659–660
software and, 658 (table), 658–669
technology and, 649–652
See also process engineering
refinery planning
computerized, 692–696, 694–695 (table)
management and, 737 (figure), 737–738
risk management and, 632–633, 633–636, 738
supply chain and, 631–632
refinery pollutants, 702 (table), 702–706, 706 (table)
air, 703, 710–711 (table), 712, 713 (table), 713–714, 714 (table)
noise, 706, 708–709
water, 702 (table), 702–703, 704–705 (table), 708 (figure)
refining companies, 605 (table), 606 (table), 772 (figure).
See also specific companies
refining industry, 60, 612–616, 629, 769–71
challenges of, 33–34, 60–61, 794–796
configuration, 612–613 (table)
history of, 61 (figure), 73, 101, 121–123, 772–774
regional, 63 (figure)
structure, 604–607. See also geographical distribution
See also markets; refineries; refinery capacity; refinery economics; refining processes; specific industry aspects
refining processes, 378–387, 388, 390 (figure), 390 (table), 522 (figure), 597–598, 610–611
automated, 724–725
complexity and, 623, 659 (figure)
control schemes and, 378–386, 379 (table), 690 (figure)
gas and, 38
See also optimization; refinery capacity; refinery economics; process cost function and; specific processes
reflux ratio, 311
ReOpt, 695 (table)
reformed gas shifting, 290–291
reformer, 277–278, 277 (figure), 278 (figure). See also specific reformers
reformer reactor model, 667
refomulated gasoline (RFG), 28, 92
refractive index, 81
refractivity intercept, 87
refractory lined vessel, 412
refrigeration, 279
RefSim, 695 (table)
regasification, 268–270, 282, 283 (figure)
genregenerator, 137 (table), 141–142, 142 (figure), 151 (figure), 153 (figure), 371 (figure), 372
regenerator heat balance, 15
regional production, 607 (figure), 607 (table), 607–608, 608 (table), 609 (table), 610 (figure), 610–611, 612 (table), 796
regulatory blend control, 489
Reid vapor pressure (RVP), 83, 473
reliability, 366–368, 369, 401
Reliance refinery, 58
remote-impounding, 726
repeatability, 462
reproducibility, 462–463
reserves
regional, 35 (table)
conventional crude oil and, 35 (table), 42–45, 43 (figure), 44 (figure), 45 (figure), 46 (figure)
conventional natural gas and, 46–51, 48 (figure), 49 (figure), 50 (figure), 51 (figure), 786 (figure)
heavy crude and, 177, 178 (figure)
unconventional crude oil and, 46, 46 (figure), 47 (figure)
unconventional natural gas and, 48–51, 51 (figure)
See also regional distribution; specific products; specific regions
reserves-to-production ratio (R/P), 55–57, 56 (table), 57 (figure)
reservoir fluids, 23–24, 24 (table), 25 (table)
residua thermal cracking, 213–215
residual fuel oil, 29
residual hydrocracking, 121 (table)
residue upgrading, 213–215, 215 (figure), 780–790, 784 (table), 785 (table)
residuum desulfurization (RDS), 234–237, 234 (table), 237 (figure)
resin, 777, 778 (table)
resource classification, 41–42, 42 (figure)
resource constraint, 675, 678 (figure)
reverse rim alignment, 398–399
Reynolds number; 331, 337, 339, 342, 344, 553–554
rigorous model, 661, 662 (figure), 664, 667
rim and face alignment, 398 (figure)
riser heat balance, 155
Riser Separation System (RS™), 138, 140
riser termination device, 138–140, 139 (figure)
riser-reactor, 127, 151 (figure)
risk curve, 634 (figure), 636 (figure), 640 (figure), 641 (figure)
routes, 407
ROK-Finer process flow, 202 (figure)
RONs, 113, 160 (table), 163, 168, 169 (table), 478
root mean square error prediction, 463
rotary compressor, 345–346
rotary displacement pump, 351
rotary equipment, 409
rotating electrical machines, 404
rotating equipment alignment, 398–399
roughness coefficient (CHW), 555–557, 559
round-robin evaluation, 468
rudimentary control, 356
Russia, 612 (table)
saccharification,” 754–755
safety, hazard, and operability analysis (HAZOP), 676
safety assurance, 696–697. See also refineries, safety and safety devices, 414
safety issues, 17, 18, 717
gasoline and, 91–92; 718
hazards and, 718–720
management and, 721–726
standards, 720–721
See also refineries, safety and
salt, 103–104, 307. See also desalting
sand filter, 351
sand pipes, 137 (table), 141, 144 (figure)
sanitation, 407
saturate, aromatic, resin, and sphalylene (SARA), 81, 178–179, 179 (figure), 777–780. See also specific components
SCANfinding process, 201–202, 227 (table)
scheduling time horizon, 540–541
scheduling, 16–17, 531, 539–542, 691, 692 (figure)
blending and, 490
computerized, 692–696, 694–695 (table)
industrial applications and, 543–544
maintenance and, 677
management and, 737–738
mathematical tools and, 542–543
offsite, 541 (figure)
short term, 539–540, 541
tools, 543, 544
See also refineries, scheduling and
second generation biofuels, 753, 765
security disclosures, 41
Selas-Linde GmbH, 270 (figure)
semicritical equipment, 396
sensitization, 41
separation assistance device, 344–351. See also compressor; pump
separation process, 102–103, 102 (figure), 102–110, 105 (figure), 105 (table), 106 (figure), 106 (table), 109 (figure), 110 (figure). See also desalting; distillation; specific processes
separation units. See heat transfer equipment; specific units; three-phase separators; two-phase separators
sequential systems, 687–688
settling regime, 337
Seveso, Italy, 717
Shaw/Axen’s feed injectors, 138
Shell, 189, 266, 695 (table)
shipment execution, 737
shock pulse monitoring, 395
shot coke, 117
shutdown maintenance, 400–401
sieve tray distillation column, 316 (figure), 318 (figure)
sigma phase, 447
silica, 246
silicoaluminophosphate (SAPO) molecular sieves, 165–166
simple deflection box, 344–345
simple refineries, 613
SimSci-Esscor’s ROMeo, 690
simulated annealing (SA), 536, 537 (figure), 537 (table), 537–538, 538 (figure), 538 (table)
simulated distillation (SD), 79
simulation model, 17–18, 200–201, 447, 543, 646–648, 663–664, 69. See also refinery modeling
simulation tools, 648 (figure). See also optimization, planning tools and; process modeling; specific tools
single-phase gases, 552–553. See also gas flow
single-phase liquids, 552. See also liquid flow
Site Source Sink Profile (SSSP), 216–217, 217 (figure), 218 (figure)
site steering committees, 741
skill level, 742
slack variables, 482
sliding vane compressor, 346
sludge, 702 (table), 703
slurry bubble column reactors (SBCRs), 278
slurry water-based hydrate process, 238–284
smog formers, 712 (table)
smoke point, 87, 462 (table)
SO3, 336
soda ash neutralization, 441
Sodegaura Refinery, 215
sodium (Na), 154
software applications, 658 (table), 658–665
commercial, 641–643
for process engineering, 665–668
real-time optimization (RTO) and, 691 (table)
scheduling and, 692 (figure), 692–696, 694–695 (table)
solid acid catalyst, 237–239
solid alkylation process, 210–213, 211 (table). See also alkylate process
solid waste, 702 (table)
solvent, 18, 29, 81, 108, 121 (table), 325 (figure)
sour oil, 26
source and sink location, 296–297, 298 (figure)
South Africa, 64–65, 95
South and Central America, 609 (table), 612 (table), 613 (table)
crude oil reserves of, 43, 43 (figure), 44 (figure), 46
energy sources and, 770 (table), 774 (table)
natural gas reserves of, 48 (figure), 49 (figure), 51 (figure)
refining in, 70 (figure)
See also specific countries
SOX reduction additive, 150, 151 (figure)
spares philosophy, 407
specific gravity (SG), 80
spectroscopy, 82, 242, 364
spectrum-based blending indices, 480
spherical tank, 499
spiral exchangers, 326
Spit MR™, 263
spot contracts, 578 (table)
stainless steel, 441, 442, 444, 447
standard deviation, 463
standard error prediction, 463
standard methods, 88–89, 89 (table). See also specific organizations
Standard Oil of New Jersey, 197. See also Exxon Mobile
starters, 402
static devices, 405
static electricity controls, 726
static equipment, 409
steady-state model, 653–656, 665, 693, 696
INDEX

steam generator system, 291
steam methane reformer, 277 (figure)
steam reforming, 289–290
steam reforming catalysts, 239–243
steam reforming, 289–290
steam reforming catalysts, 239–243
stochastic model, 638–641, 639 (table), 640 (figure), 641 (figure), 641 (table), 643 (figure)
stoichiometric optimization, 536
stoichiometric programming, 633
stock quality, 486–487
stock tank, 487
storage tank. See tank
stock tank inventory. See tank inventory
straight-edge alignment, 398
straight-run products, 107
strainer, 351
Strategic Research Agenda, 750–751
stream identification, 533 (table)
stream pooling, 485
stress corrosion cracking (SCC), 441–443
stress-related failure, 414
stripper, 137 (table), 140 (figure), 140–141, 151 (figure), 323 (figure)
stripping, 108. See also stripping
structure-oriented lumping (SOL), 652
sugar cane, 754
sulfur, 23, 462 (table)
admixtures, 150
corrosion and, 443–444
fluid catalytic cracking (FCC) and, 150 (figure), 151 (figure)
fuel and, 94–95, 474, 476. See also specific fuels
grades of, 94–95
measurement of, 465
recovery of, 120–121, 254–255, 626 (table), 628
refining and, 612–613
removal of, 62–64, 149–150, 150 (table). See also desulfurization
See also sulfur content; ultralow sulfur diesel (ULSD)
sulfur content, 82
in crude oil, 119, 616, 618, 781 (figure)
in diesel fuel, 119 (table), 202–203, 203 (figure), 205 (figure)
in diesel oil, 229
environmental legislation and, 227, 464–465. See also environmental regulation
in gasoline, 89, 90 (figure), 149–150, 150 (table), 198–200, 199 (figure)
See also desulfurization; hydrodesulfurization (HDS)
sulfur oxide (SO2) emission, 224–225, 703
sulfur reduction additive, 149–150, 150 (table)
Sumitomo Chemical Company (SCC), 217–218
Sumitomo Precision Products, 270 (figure)
SUNCOR, 191, 192 (figure)
Super Type-II Active Reaction Sites (STARS™), 232 (figure)
supercritical equipment, 396
supply cost, 591–592
supporting process, 102 (figure), 103, 120–121
surface production operations, 24–25
sustainability, 749–752
Sweden, 63
sweet crude, 444. See also sweetening
sweetening, 121 (table), 252–254. See also pretreatment switchgear, 402–403
Syn Technology, 207 (table), 210
SynCrude process, 192 (figure)
SynSat process, 204 (figure)
SynTechnology, 64
synthesis gas technology, 275, 277, 278
synthetic catalysts, 223
synthetic fuel (BLT), 752, 762 (table), 763–764
S-Zorb process, 205, 206 (figure)
T
tabu search, 537
tail gas, 292, 293 (figure)
tank, 273, 513–514
cleaning, 408
costs and, 516
environmental concerns and, 704 (table), 710 (table)
inspection, 408, 413 (table), 413–414, 425, 426
quality measurement and, 487, 488 (figure)
types, 499–502, 500 (figure), 501 (figure)
See also tank farm
tank farm, 14, 15 (figure), 16, 484–485, 499, 504 (table)
capacity of, 502 (figure), 503 (figure), 503–504, 504 (figure)
design of, 499–504, 500 (figure), 501 (figure), 502 (figure), 502 (table), 503 (table), 507 (figure)
inventory, 504–510, 505 (figure), 506 (table), 508 (figure), 509 (figure), 510 (figure)
oil movement in, 514–521, 515 (table), 516 (table), 518 (table), 520 (figure), 521 (figure)
qualities, 510–514
See also tank
tank inventory, 504–510, 505 (figure), 506 (table), 508 (figure), 509 (figure), 510 (figure)
tank inventory calculations, 507–510, 508 (figure), 509 (figure)
tank lubrication blending, 527 (figure)
tank quality estimation, 512–513, 513 (figure)
tank quality measurement, 487, 488 (figure), 513 (figure)
tar sand, 25 (figure). See also Canadian tar sands
task status monitoring, 521
TEAL process, 268
technical management systems, 686
technology, emerging, 790, 791 (table)
temperature
distillation, 782 (figure), 783 (figure)
fluid catalytic cracking (FCC) and, 155, 201
hydrogen processing, 294–295
measurement, 506, 534
pipe flow and, 570–573
refining maintenance and, 395
reformers and, 240–241, 241 (figure)
Ten-lump kinetic model, 131 (figure)
terminal operations, 521–523, 523 (figure), 524 (figure)
terminals, 403. See also terminal operations
test method. See product, test method
test productivity, 463–464
thermal conversion technologies, 103, 182–185, 183 (figure), 626 (table). See also thermal cracking
thermal cracking, 103, 116–117, 121 (table), 626 (table)
thermal reforming, 121 (table)
thermodynamic models, 652–653
thermodynamics, 159, 161 (figure), 250, 409. See also hydroisomerization
thermolysis of water, 291–292
thin layer chromatography (TLC), 179
thiol formation, 200 (figure)
thiophene hydrodesulfurization, 226 (figure)
TLC/FID analysis, 181 (figure)
total acid numbers (TANs), 393, 448
total isomerization process (TIP), 168, 170 (figure)
toxicity, 719
trade. See crude oil, trading; fuel oil, pricing; markets
training, 669, 696, 742
training simulator, 696
transesterification, 31
transportation fuel, 18, 752
demand for, 61–67, 63 (figure), 64 (figure)
regional consumption and, 61–62, 65 (figure)
See also biodiesel; biofuel; diesel; gasoline; natural gas, as transportation fuel; specific fuels
transportation, 16, 549–550, 608 (table)
acids and, 114
cost and, 549
heavy crude and, 191 (figure)
hydrogen and, 295–296
modeling and, 565–570
natural gas and, 9–10, 279–281, 288, 549–550, 550 (figure), 563, 568 (figure)
See also pipelines; gas transport modules (GTM™)
tray columns, 319–320, 320 (figure)
trays, 317, 318 (figure)
truck terminal, 523, 524
true boiling points (TBPs), 79
trueness, 463
tube plugging, 413
tungstate-promoted zirconia, 166–167
tungsten oxycarbide, 163–164
turbexander extraction, 259, 268
twin laser reverse indication alignment, 399 (figure)
Twister™, 258
two-phase separators
horizontal, 340 (table), 340–342, 341 (figure)
vertical, 339 (figure), 339–340
two-stage desalter, 308 (figure)
two-tier blending, 490 (figure)

U
U.S. Clean Air Act (CAA), 703
UFR/OCR process, 236
ultra-heavy feedstock conversion, 224
ultralow sulfur diesel (ULSD), 62–64, 464, 792
ultrasonic analysis, 395, 409
unconventional hydrocarbon. See specific products
unconventional oil, 33, 42 (figure), 46
unconventional reserves. See crude oil, unconventional reserves; natural gas, unconventional reserves
Unionfinding/APCU, 207 (table)
unit programming modeling (UPM), 662–663, 663 (figure), 664 (figure)
unit shutdown, 410, 411 (table)
unit troubleshooting, 666
United States
biofuel and, 756
crude oil and, 288 (table)
demand in, 598–599, 599 (figure), 560 (figure)
diesel fuel and, 95 (table), 103
environmental regulations and, 714 (table)
gasoline and, 91–92
industry structure and, 604–607
refining in, 103, 123, 123 (figure), 599–604, 602 (figure), 602 (table), 603 (figure), 604 (figure), 216 (table), 613 (table), 615
refining companies in, 605 (figure), 605 (table), 606 (table), 606 (figure), 606 (table), 606–607, 608 (table)
regional specialization in, 607–608
Universal Oil Products (UOP), 109, 110 (figure), 112 (figure), 114–115, 117, 119. See also UOP FCC process; UOP CCR, 112, 112 (figure)
UOP FCC process, 111, 112 (figure)
UOP/FWUSA solvent deasphalting, 109–110, 110 (figure)
upgrading
bottom-of-the-barrel, 233–237
crude oil, 780–790, 790 (figure), 791 (table), 780–785
heavy-oil, 181–193, 183 (table), 184 (figure), 185 (table), 186 (figure)
residue, 213–215, 215 (figure), 780–790, 784 (table), 785 (table)
technology and, 791 (table)
upside potential (UP), 635
vacuum distillation, 9
vacuum distillation unit
vacuum distillation unit, 380, 438, 451–452
vacuum gas oil (VGO) hydrotreating, 207 (table) 207–210, 207
catalyst technology and, 230–231, 231 (table)
heat exchanger network (HEN) and, 537–538
vacuum residue (VR), 233. See also bottom-of-the-barrel vacuum tower, 107
Valero, 606
value at risk (VaR), 634–635, 635 (figure)
valve actuators, 405–406
vanadium, 23, 148, 154–155, 230–231
vane-type device, 345
vapor liquid contact, 316 (figure)
vapor pressure, 83, 462 (table), 757 (figure)
vapor product, 107
vaporization, 270–273, 271 (table)
vapor-liquid equilibrium (VLE), 309–310
vapor-to-liquid (V/L) ratio, 83
variable costs, 591
variance, 463
velocity equations, 561–562, 563. See also pipelines, flow equations
Venezuela, 46, 70, 187 (table), 193 (table)
ventilation, 725
vessel inspection, 412, 423
vibration monitoring, 394, 418, 419–421
videoscopic inspection, 409
visbreaking, 117, 111, 112 (figure), 182–184, 183 (figure)
viscosity, 84, 462 (table). See also viscosity index
viscosity gravity constant (VGC), 87–88
viscosity index, 29, 88
volatile oils, 24
volatile organic compounds (VOC), 712 (table)
volatility, 758
volatility index. See fuel volatility index (FVI)
volatility models, 651–652
Vortex Separation System (VSS™), 138, 140
VOTRANS™, 280

W
warehouse management, 744–745
wastewater, 702, 703, 707 (table), 709 (table), 711 (table)
water-gas shift (WGS) catalyst, 241, 242
water pollution, 702 (table), 702–703, 704–705 (table), 708 (figure)
water washing, 450
Watson (UOP) characterization factor, 87
wavelength-dispersive X-ray fluorescence (WDXRF), 465
waxes, 29
wear metal, 394 (table)
wet gas, 24
wet H₂S corrosion, 438, 440
Weymouth equation, 557, 558–559
wobbee index (WI), 251
workforce, 682 (table), 729–730, 741–742, 746
World Energy Outlook, 774–775

X
X-ray absorption fine structure (XAFS), 243

Y
yield estimation, 152
YPF La Plata Refinery, 252 (figure)

Z
zeolite, 127, 129, 130, 133, 14
active matrix and, 146–147
alkylation and, 237–23
fluid catalytic cracking (FCC) and, 223–224
hydrodesulfurization and, 212
hydroisomerization and, 161–163, 165, 162 (table), 164 (table)
inovation and, 197
synthesis of, 144–146, 146 (figure)
See also thermal cracking; zeolite Y; ZSM-5
zeolite-to-matrix ratio, 224
zeolite Y, 145–146
zeolitic catalysts. See zeolite
ZSM-5, 130–131, 149 (figure), 162, 224
ZSM-12, 162
ZSM-22 (TON), 165
ZSM-23 (MTT), 165