Index

A

abiological degradation, environmental characteristics and, 1544
abrasion resistance, of petroleum waxes, 109–110
abrasive wear, 443, 725, 725 (figure), 888, 1582–1583, 1583 (figure)
accelerated corrosion tests, for lubricating greases, 952
accelerated quenching oils, 1003–1004
accepted reference value (ARV), 1703, 1706–1707
accumulation processes, environmental characteristics and, 1549–1550
acid formation, oxidation and, 1364, 1368 (figure)
acid neutralizers, 468
acid number
compressor lubricants and, 706
diesel fuel oils and, 259
heat transfer fluids and, 969, 969 (figure)
quenching and, 1008
total, 570, 572 (figure), 573 (figure), 1151
turbine lubricating oils and hydraulic fluids and, 617, 618 (figure)
acoustic-resonance technique, for asphaltene precipitation onset pressure, 48, 49 (figure)
additives. See also antioxidants; antiwear agents; detergents; dispersants; dispersant viscosity modifiers; extreme-pressure agents; friction modifiers; lubricants
antisquawk, 442–443
ASTM standards for, 500–502
for automotive engine lubricants
antioxidants, 765–766
antiwear agents, 766–767, 767 (figure)
balanced formulation, 768
corrosion inhibitors, 766
detergents, 768
dispersants, 768
emission-control and, 764
EP agents, 767–768
foam inhibitors, 769
friction and, 764, 848–849, 850 (figure), 851 (figure)
friction modifiers, 766
PPDs, 768–769
rust inhibitors, 766
VI improvers, 768
wear, 848–849, 850 (figure), 851 (figure)
aviation gasoline, 228, 228 (table)
base stock properties and, 352–353
biocides, 495
boundary lubrication and, 443, 449, 452 (table), 1606, 1609–1612, 1609 (figure), 1609 (table), 1610 (figure), 1611 (figure)
classes of, 363–366, 365 (table)
comparison of, 461 (table)
for compressor lubricants, 698–700, 699 (table)
corrosion and wear with, 371–372
corrosion inhibitors and, 470
couplers, 495
demand for, 362–363
demulsifiers, 470, 472, 473 (figure), 474
development and approval process of, 495–498, 497 (figure)
drag reducer, 1120
driveline lubricant, 358–359
dyes, 495
demulsifiers, 470, 472, 473 (figure), 474, 474 (figure)
engine oil, 358, 757
environmental impact of, 498
foam inhibitors, 492–494, 494 (figure), 607–608, 608 (figure)
for gear lubricants, 728
antiwear agents, 729–730, 733 (table)
chemically active, 731 (table)
chemically inert, 732 (table)
detergents, 730, 734 (table)
dispersants, 730, 734 (table)
EP agents, 729, 733 (table)
miscellaneous, 736 (table)
government regulations on, 351, 498–500, 499 (figure)
in HFA and HFB fluid composition, 536, 536 (table)
in HFC fluid composition, 541–542, 542 (table)
history of, 351
IL lubricants and, 1047, 1048 (figure), 1048 (table)
industrial lubricant, 359
jet fuel, 227–228, 227 (table)
lubricant development trends and
in HDDEOs, 354–355
in PCMOs, 353–354, 353 (figure), 355 (figure)
lubricants and
composition of, 363, 363 (figure), 363 (table)
engine and nonengine, 495, 496 (table)
properties of, by application, 358 (table)
samples of, 1069, 1071, 1072 (table)
lubricating greases and, 939
lubricity, 189
market for, 359, 360 (figure), 361–363
metalworking and machining fluids and, 901 (table)
alkalinity agents and, 911
antiinfectious agents and, 911–912, 913 (figure)
antimicrobial agents and, 911
antioxidants and, 913–914, 914 (figure)
corrosion inhibitors and, 911, 912 (figure)
couplers and, 903–904, 904 (figure)
dispersants and, 910, 911 (figure)
dyes and, 914
demulsifiers, 900–903, 902 (figure), 902 (table)
EP agents and, 905–910, 906 (figure), 907 (figure), 908 (figure), 909 (table), 910 (figure), 910 (table)
film formers and, 904
foam inhibitors and, 912–913, 913 (figure)
friction modifiers and, 904–905, 904 (figure), 905 (figure)
inorganic/organic solids and, 914–915
odor-control agents and, 914
multifunctional nature of, 495
oil consumption and, 371, 371 (figure)
oil thickening and, 371
in performance package, 498
petroleum wax, 98
polar and nonpolar groups in, 364, 364 (figure), 365 (figure), 365 (table)
polymeric, 364, 474–475
PPDs, 491–492, 492 (figure), 493 (figure)
See also aerospace fuels.
aero-derivative gas turbines, 585–586

Aeration
Advanced Combustion Emission Reduction Technology (ACERT), 797

Adhesive wear, 443, 725, 888, 1577–1582, 1580 (figure), 1582
Adhesion, friction due to, 1567

Alcohol
Alcohols

Air
Air dilution, of aerospace fuels, 1309
Air release

Aldehydes

Alkenes, 280, 282 (figure)

Alkali metals

Alkane
Alkanes, 187, 280, 282 (figure), 292

Alkene
Alkenes, 280, 282 (figure)

Alkylation, 13–15, 15 (figure), 15 (table)

Alkyl
Alkylated cyclopentanes, 525–526

Alkyl benzene

Alcohol
Alcohols

Allylic
Allylbenzenes, 411–412, 411 (figure)

Alternating current

Air
Air dilution, of aerospace fuels, 1309
Air release

Alcohol

Alkanes, 187, 280, 282 (figure), 292

Alkene

Alkylation

Alcohol

Alkylation

Alcohol

Alkenes, 280, 282 (figure)

Alkylation

Alcohol

Alkyl

Alkylation

Alcohol

Alkyl

Alkene

Alkyl

Alkene

Alkyl

Alkenic

Alcohol

Alkenic

Alcohol

Alkenic

Alcohol

Alkenes, 280, 282 (figure)

Alkene
aluminum beaker oxidation test (ABOT), 1388, 1390 (figure), 1390 (table)
aluminum complex greases, 938, 941
aluminum production, carbon anodes for, 1354
aluminum soap greases, 938, 940
American Gear Manufacturers Association (AGMA), 357
American Petroleum Institute (API)
base stock categories of, 755–756, 755 (table)
CI-4 engine oils user language of, 797
CI-4 engine oils user language of, 834
gear oil system of, 754–755
gear lubricant service designation of, 737–738, 737 (table), 738 (table), 739 (table)
gear oil system of, 754–755
gear lubricant service designation of, 737–738, 737 (table), 738 (table), 739 (table)
gear oil system of, 754–755
gear lubricant service designation of, 737–738, 737 (table), 738 (table), 739 (table)
gravity, 247, 261
fuel oils and, 1328–1330
static petroleum measurement and, 1066–1067
hydrocarbon base oil classification by

categories in, 273–274, 274 (figure), 274 (table)
by composition, 274–275, 275 (figure)
Group I, 275–276
Group II, 276
Group III, 276
Group IV, 276
Group V, 276–277
by physical properties, 275, 275 (table)
static petroleum measurement standards of, 1055–1056
turbine lubricating oil and hydraulic fluid standards of, 640
amine dispersants, 392
amines, in polymeric dispersant synthesis, 396–398, 397 (figure), 398 (figure)
amine treating, 24, 24 (figure)
ammonia, LPG and, 167
Amonton’s law, 683
Andrews, Thomas, 151
aniline points, hydrocarbon base oil solvency and, 315–316, 315 (table), 316 (figure), 316 (table)
anionic emulsifiers, 902–903, 903 (figure)
anthracycline, 842
Antiknock Index (AKI), 192–193, 193 (table), 196–197
antimicrobial agents, metalworking and machining fluids and, 911–912, 913 (figure)
antimisting agents, metalworking and machining fluids and, 911
antioxidants
ACEA tests for, 389
ASTM standards for, 389
for automotive engine lubricants, 766–766
base stocks and, 386, 387 (figure), 388 (figure)
for compressor lubricants, 698, 699 (table)
detergents as, 426–427, 427 (figure)
diphenylaminophenolics and, 386, 387 (figure)
for engine oils, 757
gasoline, 189
for gear lubricants, 730–731, 735 (table)
hindered phenols as, 1366–1367, 1373 (figure), 1398
hydraulic fluids and, 850–651, 651 (figure), 652 (figure)
aldehydes and, 378–379
mechanism of, 373, 375 (figure), 377 (figure)
organocarbonyls and, 373–374, 378, 378 (figure)
phenol and, 377 (figure), 378–379
ZDDPs and, 379, 379 (figure)
radical scavengers
arylamines and, 381, 382 (figure), 384 (figure), 386, 387 (figure)
hindered phenol and, 379–380, 381 (figure), 383 (figure)
phenothiazines and, 381–382
ZDDPs and, 379, 380 (figure)
as radical scavengers, 1365, 1370 (figure)
structures of, 373, 377 (figure)
synergism and, 385–386, 386 (figure), 387 (figure)
transition metals as, 382, 384 (figure), 385, 385 (figure), 1367–1368, 1375 (figure)
turbine lubricating oils and hydraulic fluids and
ASTM tests for, 601–603, 602 (figure), 603 (figure), 604 (figure), 604 (table)
structures of, 598, 600, 600 (figure)
synergism of, 600, 601 (table)
viscosity and, 385, 386 (figure)
wear and, 385, 386 (figure)
ZDDPs as, 1365–1366, 1372 (figure)
antiskwak additives, 442–443
antioxidant agents, 189.
See also zinc dialkyldithiophosphates
for automotive engine lubricants, 766–767, 767 (figure)
avtomotive service ratings and, 443, 444 (figure)
biodegratability of, 461, 462 (table)
boundary lubrication and, 1612, 1612 (figure)
commercial availability of, 447
common organophosphorus compounds as, 444, 445 (figure)
for compressor lubricants, 698–699, 699 (table), 708
dithiocarbamates as, 447
for engine oils, 757
film formation by, 444
for gear lubricants, 729–730, 733 (table)
hydraulic fluids and, 659
oxidation ASTM testing of
ASTM D943, 1370–1372, 1376 (figure), 1376 (table)
ASTM D2272, 1372–1373, 1377 (figure)
ASTM D4310, 1372, 1376 (table)
structures of, 443, 606 (figure)
thermal activation of, 1611, 1611 (figure)
thermal stability and, 445, 447 (figure)
for turbine lubricating oils and hydraulic fluids, 605–608, 606 (figure), 607 (figure), 608 (figure)
antioxidant numbers (AWNs), 452–453, 453 (figure), 453 (table)
antioxidant performance testing, for hydraulic fuels, 654, 655 (table), 658–659, 658 (figure)
AOCS methods, for biodegradable lubricants oxidation testing, 1399
apparent viscosity, 1487
lubricating grease flow properties and, 945
Appledoorn equation, 1604–1605
aquatic toxicity tests, 1556
aqueous polymer quenchants, 1006–1007, 1006 (figure)
appearance of, 1011–1012
cloud point of, 1015, 1015 (figure)
conductance of, 1014, 1014 (figure)
cooling curve analysis for, 1017, 1017 (figure), 1018 (figure)
corrosion inhibitors and, 1015–1016, 1015 (figure)
degradation analysis for, 1016, 1016 (figure)
foaming and, 1016
pH of, 1014
refractive index, 1012, 1012 (figure), 1013 (figure)
viscosity of, 1012–1013, 1013 (figure)
water content and, 1014
Archard's wear constant, 1579, 1582, 1582 (table)
aromatic esters, 514, 514 (figure)
aromatic hydrocarbon base oils, 284, 286, 286 (table), 289, 290 (table)
aromaticity, of hydrocarbon base oils, 316–318, 318 (figure)
aromatics, 187
asphaltene chemical separation with, 68, 68 (figure), 69 (figure)
btx recovery, 12–13, 13 (figure)
characteristics of, 3–4
composition of, 4
in crude oil, 281, 282 (figure)
determination of, 347
in diesel fuel oils, 256–257
GC and, 1114–1115
LC and, 1110
reduction of, 15–18, 26
Arrhenius equation, 254
arsenic test, of used oil, 33
arylamines
as antioxidants, 1366–1367, 1374 (figure)
radical scavengers and, 381, 382 (figure), 384 (figure), 386, 387 (figure)
aryl phosphates, synthesis of, 448, 451 (figure)
aryl phosphites, synthesis of, 448, 451 (figure)
AS4059 standard, for particle counting, 1235
ash
definition of, 365
in diesel fuel oils, 259–260
microelemental analysis of, 1096
in petroleum coke, 1346
quenching and, 1010
sulfated
detergents and percent, 422–423
microelemental analysis of, 1096
phosphorus, and sulfur (SAPS) limits, 356, 428
ashless friction modifiers, 440
asphaltene detergents, 66
asphaltene dispersants (ADs), 67
asphaltene flocculation inhibitors (AFI), 67–68, 68 (figure)
asphaltene inhibitors (AIs), 66–67
asphaltene precipitation envelope (APE), 47, 48, 55–56, 56 (figure)
pressure-temperature curve of, 52, 52 (figure)
asphaltene-to-resin ratio, 64, 65 (figure)
Association des Constructeurs Européens d’Automobiles (ACEA), 754, 839, 841
Association of Natural Gasoline Manufacturers (ANGM), 150
ASTM Slope, 1504, 1604
ASTM standards and tests
for additives, 500–502
for aerospace fuels, 1317
for antioxidants, 389
for automotive engine lubricants, 856–858
for aviation fuels, 235–236
for biodeterioration, 1265–1266
for carbon materials, 1355–1358
for cold flow properties, 1355–1356
for compressor lubricants
acid number, 706
air release, 704
antiwear agents, 708
autoignition temperature, 704
carbon residue, 706
CBT test, 710–711, 711 (table), 712 (figure)
compressor tests, 708–709, 709 (figure), 709 (table), 710 (figure), 710 (table), 711 (table)
corrosion, 704
demulsibility, 703–704
evaporation, 705, 705 (figure)
filter bowl compatibility test, 716
flash and fire points, 704
foaming tendency, 704
gas solubility, 711–715, 713 (figure), 713 (table), 714 (table), 715 (figure), 716 (figure)
heat transfer efficiency, 715–716
hydrolytic stability, 704
EOR and, 39, 40
experimental and modeling studies in processing, 69
flocculation of, 57, 57 (figure), 67–68, 68 (figure)
hypothetical structures of, 42 (figure)
interfacial characteristics of, 46
ior and, 40
macrostructure of, 42–43, 43 (figure)
molecular weight of, 44–46, 45 (figure)
nanostructure of, 43–44, 43 (figure), 44 (figure)
petroleum oil studies on, 1115
MS for, 1161–1162, 1162 (figure)
phase behavior models for, 52–55, 54 (figure)
precipitation of
\(CO_2 \) injection and, 60–61, 61 (figure)
composition changes causing, 58, 58 (figure)
overview of, 57–58
possibility criteria for, 64–65, 65 (figure)
pressure changes causing, 58–60, 59 (figure), 60 (figure), 60 (table)
prevention methods for, 65–67, 66 (figure)
precipitation onset pressure measurement of, 47
acoustic-resonance technique for, 48, 49 (figure)
comparison of methods for, 51
electrical-conductance technique for, 50
filtration technique for, 49
gavimetric technique for, 48, 48 (figure)
HPM technique for, 49–50, 51 (figure)
IP-143 method for, 50–51
light-scattering technique for, 48–49, 50 (figure)
viscometric technique for, 50
solubility parameters and, 47
upstream issues with, 41
viscosity and, 46, 47 (figure)
IR spectroscopy, 706–707, 706 (figure)
kinematic viscosity, 701–702
liquid heptane washing test, 708, 708 (figure)
oxidation, 707, 707 (figure)
paint compatibility test, 716
pour point, 703
precipitation number, 706
seals compatibility, 716
specific gravity, 702
specific heat, 715–716
standards, 717–718
thermal conductivity, 715–716
viscosity of gas/liquid mixtures under pressure, 715
water content, 703

for corrosion, 470
diesel fuel oils, 1408
engine oils, 1408, 1410
gear oils, 1410
HDDEOs, 1410
industrial lubricants, 1410–1413, 1411 (figure), 1412
lubricants, 1408, 1409 (table), 1410 (figure), 1410 (table)
lubricating greases, 1409 (table), 1413–1414, 1414 (figure), 1415 (figure), 1415 (table)
standards, 1415–1416
D4814, for gasoline
AKI and, 196–197
alkyl lead content and, 200
copper corrosion test and, 200
driveability index and, 197–198, 198 (figure)
gasoline and ethanol blending and, 200
oxidation stability and, 201
phosphorus content and, 201
silver corrosion test and, 200
sulfur content and, 200–201
vapor pressure and, 198–200, 199 (figure)
voltatility and, 197–200, 197 (figure), 197 (table)
washed and unwashed gum and, 201
water tolerance and, 201–202
for diesel fuel oils, 266–269
for DME, 153–154
for elemental analysis, 1099, 1099 (table), 1101–1104
for engine oils, 758–759
oxidation testing, 1385–1387, 1386 (figure), 1389 (figure)
for environmental characteristics, 1560–1561
for environmentally acceptable ester-based hydraulic fluids, 575–576
for EP agents, 1692–1693
for flow properties, 1508–1511, 1509 (figure), 1510 (figure), 1511 (table), 1513–1515
for friction and wear, 1691–1692
for fuel economy, 432, 432 (table)
for fuel oils, 1328, 1329 (table), 1355–1358
for gasoline, 204–206
for GC, 1120–1124
analytical methods, 1113–1117
 crude oils, 1119
 hydrocarbon analysis, 1117–1118
 lubricants and in-service engine oils, 1118–1119
 simulated distillation methods, 1111–1113
for gear lubricants
acid number, 745
air release, 749
base number, 747
CCS viscosity, 748
channel point FTM, 749
chlorine, 746
compatibility, 749
copper strip tarnish test, 743
corrosion, 749
cyclic durability test, 748
demulsibility, 747
dynamic seals test, 749
elemental content, 747
flash and fire points, 743
foaming, 746
four-ball EP test, 747
four-ball wear test, 746
FZG test, PT5, 749
FZG test, scuffing, 747–748
gear scoring test, 749
gear scoring test, 746
GFC oxidation test, 748
gravity, 744
high temperature foam inhibition, 748
insolubles, 746
low speed high torque hypoid test, 748
low-temperature properties, 747
nitrogen, 747
oxidation of EP oils, 747
phosphorus content, 746
pour point, 743
precipitation number, 742–743
rust inhibition, 746
seal compatibility, 748
shear stability, 749
standards, 750–751
storage stability, 749
sulfur, 746
synchronizer SSP 180 test, 748–749
thermal and oxidation stability, 748
Timken EP tester, 746–747
VI, 746
viscosity, 744
water content, 746
for heat transfer fluids, 972–974
for hydraulic fluids, 676–678
for hydrocarbon base oils, 326 (table)
for LC, 1109–1110, 1120–1123
for LPG, 145, 147–175
DME and, 153–154
history of, 152–153
for lubricants, 1069, 1070 (table)
carbon residue, 1077–1078, 1077 (table)
chlorinated solvent elimination in, 1081
foaming, 1079
insolubles, 1078–1079
international methods, 1080–1081
other methods, 1080
proficiency testing programs, 1080
standards, 1081–1083
volatility, 1079–1080
for lubricating greases, 942
chemical analysis, 954–955
compatibility, 954
consistency, 943–944, 943 (figure), 944 (table)
consistency stability, 944
contamination, 953, 953 (figure)
corrosion, 952, 952 (figure)
discontinued standards, 955
elastomer compatibility, 953–954
EP agents and wear, 950–952, 951 (figure)
flow properties, 944–946
heat resistance, 946–948, 946 (figure), 947 (figure), 948 (figure)
ignition test, 955
oxidation stability, 948–950, 949 (figure), 950 (figure)
oxidation testing, 1382–1385, 1384 (figure), 1385 (figure), 1386 (figure)
standards, 957–958
static bleed test, 954
water content, 952–953, 953 (figure)

for lubrication, 1621–1622
for measurement processes, 1709
for metalworking and machining fluids, 928–930
for mineral oil heat transfer fluids, 963, 964 (table), 965
for NMR spectroscopy, 1137–1138, 1138 (table), 1148
for olefins, 349
C4 olefins, 345–346
ethylene, 344
general, 346–348
propylene, 344–345

for oxidation, 601–603, 602 (figure), 603 (figure), 604 (figure), 604 (table), 649–650, 649 (figure), 649 (table)
for oxidation testing, antiwear
ASTM D943, 1370–1372, 1376 (figure), 1376 (table)
ASTM D2272, 1372–1373, 1377 (figure)
ASTM D4310, 1372, 1376 (table)
ASTM D6514, 1379

for oxidation testing, engine oils, 1385–1387, 1386 (figure), 1387 (figure), 1388 (figure)
for oxidation testing, gasoline
ASTM D4625, 1393–1394, 1395 (figure)
ASTM D381, 1390–1391, 1392 (figure)
ASTM D525, 1391, 1392 (figure), 1393 (figure)
ASTM D873, 1392–1393
ASTM D2274, 1393, 1394 (figure), 1395 (figure)
ASTM D3241, 1393
ASTM D6468, 1394–1395
ASTM D7525, 1395
ASTM D7545, 1396

for oxidation testing, gear oils, 1379–1381, 1381 (figure), 1381 (figure), 1382 (figure)
for oxidation testing, lubricants, 1396–1399, 1397 (figure), 1397 (figure), 1398 (figure)
for oxidation testing, lubricating greases, 1382–1385, 1384 (figure), 1385 (figure), 1386 (figure)
for oxidation testing, turbine oils
ASTM D2070, 1374–1376, 1378 (figure)
ASTM D4636, 1376–1377, 1379 (figure)
ASTM D5846, 1378–1379, 1380 (figure)

for particle counting, 1233, 1235
for PC-11 engine oils, 836
for petroleum coke, 1355–1358
for petroleum pitch, 1355–1358
for petroleum waxes, 81, 81 (table), 110–112
for pipeline corrosion, 1471

for quenching
acid number, 1008
aqueous polymer quenchants, 1011–1016
ash content, 1010
biodeterioration monitoring procedures, 1016–1017, 1017 (figure)
carbon residue, 1009–1010
cooling curve analysis, 1010–1011, 1011 (figure), 1017, 1017 (figure), 1018 (figure)
flash point and fire point, 1008
fluid biodeterioration processes, 1016
GM quenchometer test, 1010, 1010 (figure)
IR spectroscopy, 1008, 1009 (figure)
precipitation number, 1010
saponification number, 1008

specific gravity, 1008
standards, 1028–1029
used quenching oil, 1010–1011
viscosity, 1007–1008
water content, 1008–1009, 1009 (figure)
for RON and MON, 193–194, 193 (table)
for rust inhibitors, 604–605
for static petroleum measurement, 1068
for synthetic lubricants, 529–531
for temperature measurement, 1277–1278
for turbine lubricating oils and hydraulic fluids, 601–603, 602 (figure), 603 (figure), 604 (figure), 604 (table), 637–639
for viscosity, 1506–1508, 1506 (table), 1507 (figure), 1508 (table)

for volatility
ASTM D2892, 1200–1201, 1201 (figure), 1202 (table)
ASTM D5236, 1201–1203, 1204 (figure), 1204 (table)
ternational methods compared to, 1203
precision values, 1200, 1200 (table)

for volatility, distillation and
ASTM D86, 1172–1173, 1172 (figure), 1173 (figure), 1174 (table), 1175 (table), 1176 (table), 1177 (table), 1178 (table), 1180 (table)
ASTM D850, 1173–1174, 1174 (table), 1176, 1178 (table), 1180 (table)
ASTM D1160, 1174 (table), 1176–1178, 1179 (table), 1180 (table)
ASTM D1160, 1179, 1181–1182, 1182 (figure), 1183 (table), 1184 (table), 1186 (table), 1187 (table), 1189 (table), 1190 (table), 1192 (table), 1193 (table)
ASTM D7344, 1178–1179, 1180 (table)
ASTM D7345, 1179, 1181 (table)
importance of, 1171–1172
international standards compared to, 1182, 1193 (table)

for volatility, flammability and
ASTM D56, 1194, 1196 (figure)
ASTM D92, 1194–1195, 1197 (figure)
ASTM D93, 1195–1196, 1198 (figure)
ASTM D1310, 1196
ASTM D3278, 1197, 1199 (figure)
ASTM D3941, 1197
ASTM D6450, 1198
ASTM D7094, 1198–1199
ASTM D7236, 1199
fire point and, 1195
flash point and, 1192–1194, 1194 (table), 1195 (table), 1196 (table)
international methods compared to, 1199–1200, 1200 (table)

for volatility, vapor pressure and
ASTM D323, 1205–1206, 1207 (figure)
ASTM D1267, 1201–1211, 1210 (figure)
ASTM D2533, 1209–1210
ASTM D4953, 1206–1207, 1207 (figure)
ASTM D5188, 1209
ASTM D5190, 1209
ASTM D5191, 1207–1208
ASTM D5482, 1208–1209
ASTM D6377, 1209
ASTM D6378, 1209
ASTM D7975, 1211
importance of, 1204–1205
international methods compared to, 1211, 1211 (table)
precision values for, 1206 (table)
summary of, 1205 (table)
atmospheric gas oil (AGO), 2, 3 (table)
atmospheric pressure chemical ionization (APCI), 1152, 1156
atmospheric pressure laser ionization (APLI), 1156–1157
atmospheric pressure photoionization (APPI), 1152, 1156
atomic absorption spectrometry (AAS), 1088, 1091 (table)
atomic-force-microscopy (AFM), 43
attenuated total reflectance (ATR), 1130, 1130 (figure)
austenite, 977, 978 (figure), 981, 982 (table)
autoclaves, for pipeline corrosion, 1456, 1458–1459, 1459 (figure)
autoignition
 combustion and, 1283–1284
temperature
 of compressor lubricants, 704
do gasoline, 202
 of heat transfer fluids, 968
automated particle counters (APCs), 1215, 1229
automatic shutdown, heat transfer fluid safety and, 971
automatic transmission fluids (ATFs)
 cold flow properties of, 1526–1527
 friction modifiers and, 434, 436 (figure), 442
 hydraulic fluids and, 671
automotive engine design improvements, 769–772
automotive engine lubricants, 321–322, 753. See also engine oils; heavy-duty diesel engine oils
additives for
 antioxidants, 765–766
 antiwear agents, 766–767, 767 (figure)
 balanced formulation, 768
 corrosion inhibitors, 766
 detergents, 768
 dispersants, 768
 emission-control and, 764
 EP agents, 767–768
 foam inhibitors, 769
 friction and, 764
 friction modifiers, 766
 PPDs, 768–769
 rust inhibitors, 766
 VI improvers, 768
ASTM standards for, 856–858
base stock composition for, 764–765
engine design improvements and, 769–772
engine operation effects on, 763–764
friction and wear reduction for, 841
additives, 848–849, 850 (figure), 851 (figure)
alternative base stocks, 842–846, 843 (figure), 844 (table), 845 (figure), 846 (figure)
estolides, 847, 847 (table)
hydrocarbons, 846–847, 847 (figure)
low and ultra-low engine oils, 847–848, 848 (table), 849 (figure)
thin-film coatings, 849, 850 (figure), 851 (figure), 852
tribological testing of Stribeck curves, 853, 854 (figure), 855 (figure)
uncoated steel, 852–853, 852 (figure)
functions of, 763
LSPI test for, 770–771, 771 (figure)
timing chain-wear test for, 771, 771 (figure)
vehicle emissions reduction and, 842, 842 (figure)
avtomotive engine oils. See engine oils
automotive gear lubricants
 historical development of, 732–733, 737 (table)
 viscosity of, 332 (table), 770
automotive service ratings, 443, 444 (figure)
Auto-Oil Air Quality Improvement Research Program, 183
auto propane, 169
autorefrigeration, 162
aviation fuels. See also aerospace fuels
ASTM standards for, 235–236
freezing point of, 1524–1525, 1525 (figure), 1526 (figure)
gasoline
 additives, 228, 228 (table)
 combustion and, 219–220
 contaminants in, 230, 230 (table)
 engines for, 212, 215
 flammability of, 222–223, 223 (figure), 223 (table)
 high aromatic content unleaded hydrocarbon, specifications for, 212, 213 (table)
 history of, 209, 212
 hydrocarbon unleaded, specifications for, 212, 212 (table)
 knock resistance, 220
 leaded, specifications for, 210 (table)
in low temperature environment, 217
manufacturing of, 225–226
unleaded, specifications for, 211 (table)
volatility of, 221
water content in, 217, 218 (figure), 219
gas turbine, 264–265
jet fuel
 additives, 227–228, 227 (table)
 combustion and, 220–221, 220 (figure)
 contaminants in, 230
diesel, 216–217
 engines for, 215–216, 216 (figure)
 flammability of, 222–223, 223 (figure), 223 (table)
 history of, 6, 212, 214 (table)
in low temperature environment, 217
manufacturing of, 226–227, 226 (table)
product color of, 232
specifications of, 6, 6 (table), 214 (table)
viscosity and, 217, 218 (figure)
visual appearance of, 232
water content in, 217, 218 (figure), 219
military specifications for, 236–237
oxidation stability of, 224–225, 1392–1393
performance requirements for aircraft range, 223
combustion, 219–221, 220 (figure)
corrosion, 223–224
flammability, 222–223, 223 (figure), 223 (table)
high temperature, 219, 219 (figure)
low temperature, 217, 218 (figure)
lubricity, 225
metering, 223
static electricity, 225
storage stability, 224–225
volatility, 221–222, 222 (figure)
quality control for
 aircraft procedures for, 234
 contaminants, 229–230, 230 (table)
 contamination detection equipment, 232–233
 contamination removal equipment, 230–232, 230 (figure)
 international procedures for, 233
 philosophy of, 229
U.S. procedures for, 233, 233 (table), 234 (table)
transportation of, 228–229
Avogadro’s law, 683, 1322
B
Baader test, for biodegradable lubricants oxidation testing, 1399–1400, 1400 (figure)
index

bench test, tribology test systems
 block-on-ring test machine for, 1683–1685, 1684 (figure),
 1685 (figure)
 designing, 1675
 four-ball EP test device for, 1683, 1685 (figure), 1684 (figure)
 four-ball test device for, 1681, 1682 (figure)
 four-ball wear test device for, 1682–1683, 1683 (figure)
 linear reciprocation test machine for, 1688–1689, 1688 (figure)
 multispecimen test machine for, 1687–1688, 1687 (figure)
 pin-and-vee block device for, 1679–1680, 1680 (figure),
 1681 (figure)
 pin-on-disk device for, 1680–1681, 1681 (figure)
 selection of, 1673, 1678–1679
 tapping torque test machine for, 1686, 1686 (figure),
 1687 (figure)
 Timken EP tester for, 1685–1686, 1685 (figure), 1686 (figure)

bending, metal-forming, 868, 893
benzene, 12, 26
benzene emission number (BEN), 185
beverage bottle test, of hydrolytic stability, 1412, 1412 (figure)
bias
 in measurement processes, 1703–1704
 monitoring, 1706–1707
bio-accumulation factor (BAF), 1549–1550
biochemical oxygen demand (BOD) test, 1545–1546
biocides, 495
 for pipeline corrosion control, 1454–1456, 1455 (figure),
 1457 (table)
biocorrosion, biodeterioration and, 1244–1247, 1244 (figure), 1245
 (figure), 1246 (figure), 1246 (table), 1247 (figure), 1248 (figure)
biodegradability
 environmental characteristics and, 1544–1549, 1545 (table),
 1547 (table), 1549 (figure), 1550 (figure)
 of EP agents, 461, 462 (table)
 of hydraulic fluids, 676, 676 (figure)
 of polyolesters and diesters, 516
 of synthetic lubricants, 529, 529 (table)
biodegradable lubricants, oxidation testing of, 1399–1400,
 1400 (figure)
biodeterioration, See also microbes
ASTM standards for, 1265–1266
biopolymers and, 1243
biosurfactants and, 1242–1243, 1243 (figure)
CE mapping for, 1259, 1260 (figure)
condition monitoring for, 1251
 fuels and fuel systems, 1255–1258, 1256 (figure)
 lubricants and lubricant systems, 1258–1259, 1258 (figure)
 water-miscible metalworking fluids, 1252–1255,
 1252 (figure), 1253 (figure), 1254 (figure)
correction strategies for
 fuel systems, 1262–1264, 1263 (figure)
 lubricant systems, 1264, 1264 (figure)
definition of, 1237
direct, 1242
 of HFA and HFB fluids, 539–540
indirect, 1242–1243, 1243 (figure)
of lubricants, 1243
 biocorrosion/MIC, 1244–1247, 1244 (figure), 1245
 lubricants and lubricant systems, 1258–1259, 1258 (figure)
 water-miscible metalworking fluids, 1252–1255,
 1252 (figure), 1253 (figure), 1254 (figure)
correction strategies for
 fuel systems, 1262–1264, 1263 (figure)
 lubricant systems, 1264, 1264 (figure)
definition of, 1237
direct, 1242
 of HFA and HFB fluids, 539–540
indirect, 1242–1243, 1243 (figure)
of lubricants, 1243
 biocorrosion/MIC, 1244–1247, 1244 (figure), 1245
 lubricants and lubricant systems, 1258–1259, 1258 (figure)
 water-miscible metalworking fluids, 1252–1255,
 1252 (figure), 1253 (figure), 1254 (figure)
correction strategies for
 fuel systems, 1262–1264, 1263 (figure)
 lubricant systems, 1264, 1264 (figure)
definition of, 1237
direct, 1242
 of HFA and HFB fluids, 539–540
indirect, 1242–1243, 1243 (figure)
of lubricants, 1243
 biocorrosion/MIC, 1244–1247, 1244 (figure), 1245
 lubricants and lubricant systems, 1258–1259, 1258 (figure)
 water-miscible metalworking fluids, 1252–1255,
 1252 (figure), 1253 (figure), 1254 (figure)
correction strategies for
 fuel systems, 1262–1264, 1263 (figure)
 lubricant systems, 1264, 1264 (figure)
definition of, 1237
direct, 1242
 of HFA and HFB fluids, 539–540
indirect, 1242–1243, 1243 (figure)
of lubricants, 1243
 biocorrosion/MIC, 1244–1247, 1244 (figure), 1245
 lubricants and lubricant systems, 1258–1259, 1258 (figure)
 water-miscible metalworking fluids, 1252–1255,
 1252 (figure), 1253 (figure), 1254 (figure)
correction strategies for
 fuel systems, 1262–1264, 1263 (figure)
 lubricant systems, 1264, 1264 (figure)
definition of, 1237
direct, 1242
 of HFA and HFB fluids, 539–540
indirect, 1242–1243, 1243 (figure)
of lubricants, 1243
 biocorrosion/MIC, 1244–1247, 1244 (figure), 1245
 lubricants and lubricant systems, 1258–1259, 1258 (figure)
 water-miscible metalworking fluids, 1252–1255,
 1252 (figure), 1253 (figure), 1254 (figure)
correction strategies for
 fuel systems, 1262–1264, 1263 (figure)
 lubricant systems, 1264, 1264 (figure)
definition of, 1237
direct, 1242
 of HFA and HFB fluids, 539–540
indirect, 1242–1243, 1243 (figure)
of lubricants, 1243
 biocorrosion/MIC, 1244–1247, 1244 (figure), 1245
 lubricants and lubricant systems, 1258–1259, 1258 (figure)
 water-miscible metalworking fluids, 1252–1255,
 1252 (figure), 1253 (figure), 1254 (figure)
correction strategies for
 fuel systems, 1262–1264, 1263 (figure)
 lubricant systems, 1264, 1264 (figure)
definition of, 1237
biota-sediment accumulation factor (BSAF), 1549–1550
black deposits, LPG and, 166–167
"Blaugas," 149
blenders, 359
blocking point, of petroleum waxes, 108, 109 (figure)
block-on-ring test, 1683–1685, 1684 (figure), 1685 (figure)
Blok's Critical Contact temperature model, 1592
bobs and tapes, 1057
boiling point, 26
 final, 1
 true, 347
volatility and, 313–314, 314 (figure)
boiling range
 of crude oil, 1, 3 (table)
 octane distribution through fuel, 194
viscosity and, 312
bomb combustion methods, in elemental analysis, 1088, 1091 (table)
bomb oxidation test, 948–949, 949 (figure)
bonded fuel, aviation fuel transportation and, 229
boring operations, machining, 866
boron nitride, 463, 464 (figure)
boundary film formation, EP agents, 456–458, 456 (figure), 457 (figure), 458 (figure)
boundary lubrication, 340, 871–872, 1599–1600, 1600 (figure)
 additives and, 443, 449, 452 (table), 1606, 1612, 1612 (figure), 1610 (table),
 1610 (figure), 1611 (figure), 1612 (table)
 antiwear agents and, 1612, 1612 (figure)
 EP agents and, 449, 452 (table), 1612–1613, 1613 (figure)
 friction modifiers and, 1606
 tribochemical wear, material surfaces and, 1606, 1607 (table)
 tribology TRL, oil types and, 1653–1654, 1654 (figure)
Boyle's law, 683, 1318
Brayton cycle, 1296–1297, 1297 (figure)
brazing, 868–869
British Standard (BS) viscometers, 1491
broaching
 abrasive wear and, 1583, 1583 (figure)
 machining operations and, 866
bronze corrosion, 468
Brookfield viscometer, 747
Broomwade 2050H Compressor Rig Test, 709, 709 (figure), 709 (table)
BT-10 test, 1388
btx recovery, in catalytic reforming, 12–13, 13 (figure)
 bulk material properties, wear and, 1574–1577
 bulk modulus, of base stocks, 352
Bunsen coefficient, 712, 714
buoyancy in air, of aerospace fuels, 1298–1299
Bureau of Mines Correlation Index (BMCI), 334
burnishing operations, machining, 866
Burton, William Merriam, 333
butadiene
 ASTM test methods and characterization of, 345–346
 peroxides in, 346
 production of, 342
 thermophysical properties of, 343 (table)
butane, 145, 162. See also liquefied petroleum gas
 butane-butene mixtures, chlorides in, 346
 i-butane, 336, 339
 n-butane, 336, 339
butane P-H diagram, 148 (figure)
butene, thermophysical properties of, 343 (table)
butylene, 342, 345

C
C₄ olefins
 ASTM test methods and characterization of, 345–346
to finished product diagram, 335 (figure)
thermal cracking for, 336, 339
cadmium
 corrosion, aviation fuels and, 224
test, of used oil, 33
calcined coke, 1344–1346, 1346 (figure), 1346 (table), 1347 (table)
calcium, in gas turbine fuel oils, 265 (table), 266
calcium complex greases, 938, 940
calcium fluoride (CaF₂), 463–464
calcium soap greases, 938
 calcium sulfonate greases, 938–939, 941
California Air Resources Board (CARB), 156, 183
California Natural Gasoline Association, 151
calorific values, of aerospace fuels, 1307–1308, 1308 (figure)
Canadian Environmental Protection Act (CEPA), 184
Canadian General Standards Board (CGSB), 145
candelilla wax, 79, 80 (figure)
Cannon-Fenske viscometers, 654
carbon
 definition of, 365
 formation of, 366–367
 NMR spectroscopy quantitative analysis of, 1146–1147
carbon anodes, for aluminum production, 1354
carbon blacks, 1351–1353, 1352 (figure), 1353 (table)
carbon cycle, 1238, 1238 (figure)
carbon dioxide (CO₂)
 in crude oil, 1422
 partial pressure, pipeline corrosion and, 1437–1438
carbon fibers, from petroleum pitch, 1353–1354, 1353 (table)
carbonizable substances, of petroleum waxes, 104, 107 (figure)
carbon materials, 1327
 ASTM standards for, 1355–1358
 carbon anodes for aluminum production, 1354
 carbon blacks, 1351–1353, 1352 (figure), 1353 (table)
 carbon fibers from petroleum pitch, 1353–1354, 1353 (table)
 graphite electrodes for electric-arc furnaces, 1354–1355
carbon residue
 in compressor lubricants, 706
 in diesel fuel oils, 260
 in fuel oils, 1331 (table), 1332
 heat transfer fluids and, 967–968
 in lubricants, 1077–1078, 1077 (table)
 quenching and, 1009–1010
carboxyls
 in C₄ olefins, 346
 IR spectroscopy and functionality of, 1125, 1125 (table)
carboxyl sulfide, in propylene, 345
carboxylate detergents, 421, 424 (figure)
carboxylic acids
 detergent substrates and, 414–416, 416 (figure)
 environmentally acceptable ester-based hydraulic fluids and, 556–557, 557 (figure)
 oxidation and, 1364, 1368 (figure)
carburetor deposits, 189
carnauba wax, 79, 80 (figure)
casinghead gasoline, 150
cast iron chip test, for water-miscible metalworking fluids, 1413, 1413 (figure)
catalytic reforming
 benzene concentration reduction in, 12
 btx recovery in, 12–13, 13 (figure)
 reactor configurations for, 10–11, 11 (figure)
 yield-octane relationship in, 12, 12 (figure)
 yields of, 12, 12 (table)
catalytic two-stage liquefaction (CTSL) processing, 123–124, 124 (figure), 125 (table)
Caterpillar Micro-Oxidation Test (CMOT), 1388, 1391 (figure)
"cat" gasoline, 10
cathodes, 1405
cathodic reduction reactions, pipeline corrosion and, 1423
cationic emulsifiers, 902–903, 903 (figure)
caveat
 corrosion, 1585
definition of, 365
hydraulic fluids and, 661, 661 (figure)
wear, 1584, 1584 (figure)
CE mapping, for biodeterioration, 1259, 1260 (figure)
chemisorption, 1606, 1609 (figure)
chemical reactivity, load-carrying capacity compared to, 454, 455 (figure), 456
chemical analysis, of lubricating greases, 954–955
descriptions of, 1109.
chemical methods, for asphaltene deposition prevention, 66
chemical methods, for determining, 1522–1523, 1522 (figure), 1522 (table)
of middle-distillate fuel oils, 1523
petroleum waxes and, 100–101, 102 (figure)
CO₂ injection, asphaltene precipitation and, 60–61, 61 (figure)
coal, structure of, 115, 116 (figure)
coalessence blocking tendency (CBT) test, 710–711, 711 (table), 712 (figure)
coalessers, for contamination removal, 924
coal oil energy development (COED) process, 117
coal tar pitch, 1333–1334. See also petroleum pitch
coupling-to-liquid conversion
 carbon efficiency factors in, 138–140
direct coal liquefaction, solvent extraction and
 asphaltene conversion pathways in, 126–127, 128 (figure)
catalytic conversion pathways in, 127, 128 (figure)
China and, 124, 126 (figure), 126 (table)
carbon rank and, 126, 127 (figure)
Exxon donor solvent coal liquefaction process for, 119–120, 122, 123 (figure)
H-coal process for, 119, 121 (figure), 122 (figure)
Kohleeol process for, 122, 123 (table)
light gas production, operating temperature and, 124, 126, 126 (figure)
LSE process for, 122
NEDO process for, 122, 124 (figure)
operation costs of, 129
plants for, 119, 120 (table)
product yields in, 119, 121 (figure)
SRC-I and SRC-II processes for, 119
temperature and reaction times in, 126, 127 (figure)
thermal pyrolysis pathway compared to, 128–129, 128 (figure), 129 (figure)
Wilsonville Pilot Plant, CTSL processing for, 123–124, 124 (figure), 125 (table)
environmental considerations in, 139–140
FTS and
cobalt catalyst in, 137, 137 (figure)
development of, 135–136
iron catalyst in, 137–138, 138 (figure)
operating plants for, 135, 135 (table)
reaction mechanism of, 136–138
ruthenium catalyst in, 136, 138, 139 (figure), 140 (figure)
direct coal liquefaction and
 methanol production and, 129–131, 130 (figure), 131 (figure)
MTG process for, 131–135
pyrolysis and
 clean-coke process for, 117
COED process for, 117
current research on, 118–119
direct coal liquefaction pathway compared to, 128–129, 128 (figure), 129 (figure)
enclo process for, 118, 118 (figure)
Lurgi-Ruhrgas process for, 115–117
occidental process for, 118
reactions in, 115, 116 (figure)
Toscoal process for, 117, 117 (figure)
Union Carbide process for, 117–118
yield of volatile products in, 118, 119 (figure)
thermal efficiency factors in, 138
coke
 cobalt, FTS and, 137, 137 (figure)
CoBr test, 163, 164
coefficient of friction, 108–109, 1565–1566, 1566 (figure)
cogeneration, petroleum oil refining and, 25
coke feedstocks, 1343–1344, 1344 (table), 1345 (figure)
coking, delayed, 20–21, 20 (figure), 21 (table)
coking value, of petroleum pitch, 1338–1339, 1339 (figure)
cold-cranking simulator (CCS) viscosity, 315, 748, 759, 1530–1531, 1530 (figure)
cold filter plugging point (CFPP), 1523–1524, 1524 (figure)
Cold Filter Plugging Point (CFPP) test, 248–249
cold flow properties, 1519. See also flow properties; low-temperature properties
ASTM standards for, 1535–1536 of ATFs, 1526–1527 cloud point and
definition of, 1521–1522
diesel fuel oils and, 1523–1524, 1523 (figure), 1524 (figure)
methods for determining, 1522–1523, 1522 (figure), 1522 (table)
middle-distillate fuel oils and, 1523 freezing point of aviation fuels and, 1524–1525, 1525 (figure), 1526 (figure)
of gear oils, 1526–1527 of hydraulic fluids, 1526–1527 low-temperature pumpability of engine lubricants and, 1531–1535, 1531 (figure), 1532 (figure), 1533 (figure), 1534 (figure)
of lubricants, 1525 engine lubricants, 1528–1529, 1529 (table)
low-temperature high-shear viscosity and, 1529–1531, 1529 (table), 1530 (figure), 1530 (table), 1531 (figure), 1531 (table)
soot-containing, 1535
low-temperature pumpability of engine lubricants and, 1531–1535, 1531 (figure), 1532 (figure), 1533 (figure), 1534 (figure)
of lubricants, 1525 engine lubricants, 1528–1529, 1529 (table)
low-temperature high-shear viscosity and, 1529–1531, 1529 (table), 1530 (figure), 1530 (table), 1531 (figure), 1531 (table)
soot-containing, 1535
turbine lubricants, 1526–1527 (figure)
other standards for, 1537 pour point and, 1520–1521, 1521 (figure)
colloidal instability index (CII), 65, 65 (figure)
color, of petroleum waxes, 104, 106 (figure)
combustion
aerospace fuels and emissions of, 1310–1311
maximum temperature of, 1302, 1308 autoignition and, 1283–1284 cycle-to-cycle variation and, 1284–1285 in diesel engines chamber development of, 1291–1294, 1292 (figure), 1293 (figure) fundamentals of, 1287–1290, 1288 (figure), 1289 (figure), 1290 (figure)
dissociated products of, proportions of, 1322–1323, 1323 (table)
EGR and, 1285, 1289 energy release rate and, 1282 flame propagation and, 1281–1283, 1281 (figure), 1282 (figure), 1283 (figure) laminar flame speed and, 1280 regulated vehicle emissions and, 1285 in SI engines chamber development of, 1283–1287, 1283 (figure), 1286 (figure), 1287 (figure) fundamentals of, 1279–1283, 1280 (figure), 1281 (figure), 1282 (figure) turbulence and, 1280–1281, 1281 (figure), 1285 combustion chamber deposits (CCDs), 189–190 compatibility. See also elastomer compatibility for compressor lubricants and seals, 716 of corrosion inhibitors for pipeline corrosion chemical treatment, 1453–1454, 1454 (figure)
filter bowl test, for compressor lubricants, 716 of gear lubricants, 749 of hydraulic fluids and seals, 666–667, 667 (table) lubricating greases and, 954 material and paint, of HFA, HFB, HFC fluids, 546, 547 (table)

paint test, for compressor lubricants, 716 of turbine lubricating oils and hydraulic fluids, 629, 631–632, 631 (table)
compound oils, 728, 729 (table)
compressed natural gas (CNG), 431 compressibility factor, 684 compression, power requirement in, 685–687, 687 (table) compression ratio, ONR, 195 compressor lubricants additives for, 698–700, 699 (table)
ASTM tests for acid number, 706 air release, 704 antiwear agents, 708 autoignition temperature, 704 carbon residue, 706 CBT test, 710–711, 711 (table), 712 (figure) compressor tests, 708–709, 709 (figure), 709 (table), 710 (figure), 710 (table), 711 (table) corrosion, 704 demulsibility, 703–704 evaporation, 705, 705 (figure) filter bowl compatibility test, 716 flash and fire points, 704 foaming tendency, 704 gas solubility, 711–715, 713 (figure), 713 (table), 714 (table), 715 (figure), 716 (figure) heat transfer efficiency, 715–716 hydrolytic stability, 704 IR spectroscopy, 706–707, 706 (figure) kinematic viscosity, 701–702 liquid heptane washing test, 708, 708 (figure) oxidation, 707, 707 (figure) paint compatibility test, 716 pour point, 703 precipitation number, 706 seals compatibility, 716 specific gravity, 702 specific heat, 715–716 standards, 717–718 thermal conductivity, 715–716 viscosity of gas/liquid mixtures under pressure, 715 water content, 703 base stocks of alkylbenzenes, 698 categories of, 694, 694 (table) fluorinated, 697 mineral oil, 694–695, 694 (table), 695 (figure) PAGs, 695–696, 696 (figure) PAOs, 696, 696 (figure), 697 (figure) phosphate esters, 695 (figure), 698 polyolesters, 695 (figure), 696–697 silicones, 697 synthetic, 695 classification of, 693 (table)
gas solubility in, 324, 700, 700 (figure), 701 (figure), 702 (figure), 703 (figure), 711–715, 713 (figure), 713 (table), 714 (table), 715 (figure), 716 (figure) hydrocarbon base oils and, 324 lubricant solubility in, 700–701, 703 (figure) lubrication requirements for, 701, 703 (table) purpose of, 683 concentric cylinder viscometer, 1488, 1488 (figure), 1509, 1509 (figure) condition monitoring for biodeterioration, 1251 fuels and fuel systems, 1255–1258, 1256 (figure)
lubricants and lubricant systems, 1258–1259, 1258 (figure)
water-miscible metalworking fluids, 1252–1255, 1252 (figure), 1253 (figure), 1254 (figure)
IR spectroscopy and, 1133–1134, 1134 (figure), 1135 (figure)
conductivity
of aqueous polymer quenchants, 1014, 1014 (figure)
of diesel fuel oils, 262, 263 (figure)
of gasoline, 203
conductors, 1405
cone and plate viscometer, 1488, 1488 (figure)
cone penetration, lubricating grease consistency and, 943–944, 943 (figure), 944 (table)
congealing point, petroleum waxes and, 98, 100
consistency
definition of, 1486–1487
lubricating greases and, 943–944, 943 (figure), 944 (table)
consistency stability, lubricating greases and, 944
constant volume vane pump testing, 1691
contact angle, of IL lubricants, 1041, 1042 (table)
contamination
aviation fuels and, 232–233
detection equipment for, 232–233
removal equipment for, 230–232, 230 (figure)
types of, 229–230, 230 (table)
in gasoline, 190
LPG and, 166–167
lubricating greases and, 953, 953 (figure)
metalworking fluids removal of, 923–925
in used oil, 30–31, 31 (table)
continuous cooling transformation (CCT) diagrams, 979–980, 980 (figure)
continuously variable transmission (CVT) fluids, 272, 322
control charts, 1707–1708
conventional oxidation catalyst (COC), 182
conventional quenching oils, 1003
conversion, detergents and, 423
Cooperative Fuel Research (CFR) Committee, 180
Co-ordination European Council (CEC) tests, 839, 841
for oxidation testing of gear oils, 1380–1382, 1382 (table), 1383 (figure), 1383 (table), 1384 (figure)
for compressor lubricants, 698, 699 (table)
copper corrosion
aviation fuels and, 223–224
chemistry of, 1406
of compressor lubricants, 704
corrosion inhibitors and, 468, 469 (figure)
in diesel fuel oils, 262–263
inhibitors, 189
chemistry of, 1407–1408, 1407 (figure)
lubricating greases and, 952, 952 (figure)
mechanism of, 468, 468 (figure)
test, 200
copper ions, in oxidation, 1368, 1376 (figure)
copper strip test, 743, 1408, 1409 (table), 1410 (figure), 1410 (table)
Corporate Average Fuel Economy (CAFE) Standards, 431
corrosion. See also copper corrosion; pipeline corrosion
acids and bases accelerating, 466–467
additives and, 371–372
ASTM tests for, 470
diesel fuel oils, 1408
engine oils, 1408, 1410
gear oils, 1410
HDEOs, 1410
industrial lubricants, 1410–1413, 1411 (figure), 1412 (figure), 1413 (figure), 1414 (figure)
lubricants, 1408, 1409 (table), 1410 (figure), 1410 (table)
lubricating greases, 1409 (table), 1413–1414, 1414 (figure), 1415 (figure), 1415 (table)
standards, 1415–1416
aviation fuels and, 223–224
base stocks and, 353
bronze, 468
cadmium, 224
cavitation, 1585
damage from, 467
definition of, 365, 465
electrochemical, 466
in gear lubricants, 749
HFA and HFB fluids and, 540
HFC fluids and, 544
hydraulic fluid protection from, 664–666, 665 (figure), 666 (table)
hydrocarbon base oils and, 321, 321 (table)
iron, 467
of compressor lubricants, 704
lead, 470
in LPG, 166
lubricating greases and, 952, 952 (figure)
metal-removal fluids and protection from, 886
microbiologically influenced, 1244–1247, 1244 (figure), 1245 (figure), 1246 (figure), 1246 (table), 1247 (figure), 1248 (figure), 1454–1456
oxidation potentials and, 466, 466 (figure)
silver, 189, 200
steel, 224
turbine lubricating oils and hydraulic fluids and, 626–627
corrosion coupons, weight loss measurements and, 1465–1466, 1466 (figure)
corrosion inhibitors
acid neutralizers, 468
additives and, 470
aqueous polymer quenchants and, 1015–1016, 1015 (figure)
for automotive engine lubricants, 766
biodegradability of, 461, 462 (table)
chemistry of, 1407–1408, 1407 (figure)
for compressor lubricants, 698, 699 (table)
copper and, 468, 469 (figure)
detergents as, 427
for engine oils, 757
film formers, 468
for gear lubricants, 731
for hydraulic fluids, 666
lead and, 470
metallurgy in automotive equipment and, 467
metalworking and machining fluids and, 911, 912 (figure)
pipeline corrosion chemical treatment by application methods of, 1452
classes of, 1450, 1451 (table)
operating conditions influencing, 1452–1453, 1453 (figure)
selection criteria for, 1452, 1452 (figure)
solubility, partitioning, and compatibility, 1453–1454, 1454 (figure)
structures of, 471 (figure)
surface activity of, 1406–1407, 1407 (figure)
for turbine lubricating oils and hydraulic fluids, 603–605, 605 (figure)
corrosion rate (CR)
EIS for, 1468, 1469 (figure)
potentiodynamic anodic polarization and polarization resistance for, 1467–1468, 1467 (figure), 1468 (figure)
potential polarization for, 1468–1469, 1470 (figure)
weight loss measurements for, 1465–1466, 1466 (figure)
corrosion wear, 1465–1466, 1466 (figure), 1467 (figure)
Council of European Union, 443, 888, 1584–1585,
1584 (figure), 1585 (figure)
couplers, 495
metalworking and machining fluids and, 903–904, 904 (figure)
coupons, corrosion, 1465–1466, 1466 (figure)
critical heat flux, quenching cooling curve analysis and, 1002, 1003 (table)
critical nanoaggregate concentration (CNAC), 44
critical pressure, 684, 684 (table)
critical temperature, 684, 684 (table)
crude oil
aerospace fuels and, 1302–1303
aromatics in, 281, 282 (figure)
asphaltene chemical separation from, 67–68, 68 (figure), 69 (figure)
asphaltene stability in, 39–40
boiling ranges of, 1, 3 (table)
classification of, 81, 81 (table)
CO2 in, 1422
density of, 4
demulsibility
of compressor lubricants, 703–704
doane agents and, 365–366
deposition formation, 189–190, 363–366
derived cetane number (DCN), 260–261
desorption, environmental characteristics and, 1542
desorption electrospray ionization (DESI), 1152
detergents
as antioxidants, 426–427, 427 (figure)
asphaltene, 66
as corrosion inhibitors, 427
dispersants compared to, 409–410, 426, 426 (figure)
decomposition temperature, of IL lubricants, 1041, 1042 (table)
decoupling, NMR spectroscopy and, 1140, 1141 (figure)
defoamants. See foam inhibitors
defoamants
as corrosion inhibitors, 427
for engine oils, 757
degumming of IL lubricants, 1041, 1042 (table)
field-forming agents and, 429–430, 429 (figure), 430 (figure)
deburring operations, machining, 867
debris removal, 1587–1588
Deming funnel experiment, 1707
density
of asphaltene, 46
density test, of used oil, 31
turbine lubricating oils and hydraulic fluids and, 618
deposits, 367
deposition formation, 189–190, 363–366
deposition electro-spray ionization (DESI), 1152
detectors
as antioxidants, 426–427, 427 (figure)
asphaltene, 66
corrosion inhibitors, 427
dispersants compared to, 409–410, 426, 426 (figure)
degumming of IL lubricants, 1041, 1042 (table)
deyasphalting, mineral oil base stocks and, 287, 293
debonding, biocorrosion and, 1246–1247, 1247 (figure)
deburring operations, machining, 867
decomposition temperature, of IL lubricants, 1041, 1042 (table)
decoupling, NMR spectroscopy and, 1140, 1141 (figure)
defoamants. See foam inhibitors
defoamants
as corrosion inhibitors, 427
hydraulic fluids and, 651
micellar structure of basic, 425, 426 (figure)
nuetral and basic synthesis of, 417
carboxylate, 421, 424 (figure)
double decomposition reaction and, 419, 419 (figure)
idealized structures for, 419, 420 (figure)
novel overbased materials and, 421–422, 424 (figure)
phenate, 421, 422 (figure)
phosphonate, 421, 423 (figure)
process for, 419, 420 (figure), 421
promoters in, 418
salicylate, 421, 423 (figure)
sulfonate, 421, 422 (figure)
parameters of
conversion, 423
degree of overbasing, 423
metal ratio, 422
percent sulfated ash, 422–423
soap content, 423
TBN, 423–425
performance testing of, 425–429, 426 (figure), 427 (figure), 429 (figure)
phenate, 421, 422 (figure), 428
phosphonate, 421, 423 (figure), 428
polar oxidation products of, 425, 426 (figure)
port blocking, piston cleanliness and, 426, 426 (figure)
salicylate, 421, 423 (figure), 428
SAPS limits and, 428
structure of, 410
substrates
alkylenols and, 413–414, 414 (figure), 415 (figure)
alkyl phosphonic and alkylphosphonic phosphoric acids and, 417, 417 (figure), 418 (figure)
alkylsalsaliclyc acids and, 416, 417 (figure)
carboxylic acids and, 414–416, 416 (figure)
natural sulfonic acid, 412–413, 413 (figure)
nonacidic, 417, 418 (figure)
olefins in, 410–411, 410 (figure)
synthetic sulfonic acid, 411–412, 411 (figure), 412 (figure)
sulfonate, 421, 422 (figure), 428
types and uses of, 427–428
detonation. See autoignition
Deutsches Institut fur Normung (DIN), 349
for biodegradable lubricants oxidation testing, 1399–1400, 1400 (figure)
for environmentally acceptable ester-based hydraulic fluids, 576–577
for friction and wear, 1693
for oxidation testing of turbine oils, 1379, 1380 (figure)
dewatering, pipeline corrosion control and, 1446, 1447 (figure), 1448, 1448 (figure)
dew point test, 163, 164, 1463, 1463 (figure)
dielectric constant, gasoline and, 203–204
diesel engines
combustion in
chamber development of, 1291–1294, 1292 (figure), 1293 (figure)
fundamentals of, 1287–1290, 1288 (figure), 1289 (figure), 1290 (figure)
corrosion ASTM tests for, 1408
direct injection, 1288, 1288 (figure)
flame structure in, 1289–1290, 1289 (figure)
fuel economy and, 431, 1291
improvements of, 761 (figure), 762–763, 762 (figure)
fuel injection splitting in, 1293–1294, 1293 (figure)
ignition delay in, 1288–1289, 1289 (figure)
indirect injection, 1288, 1288 (figure)
piston geometry in, 1292, 1292 (figure)
swirl generation in, 1292–1293
diesel fuel oils
acid number and, 259
aromatics in, 256–257
ash in, 259–260
ASTM standards for, 266–269
carbon residue in, 260
cleanliness of, 250–253, 251 (table), 252 (table)
cloud point of, 248–249, 1523–1524, 1523 (figure), 1524 (figure)
conductivity of, 262, 263 (figure)
copper corrosion in, 262–263
demand for, 27
density of, 247
distillation of, 244
dyed, 264
diesel particulate filters (DPFs), 271
diester
application and performance characteristics of, 516–517
chemical characteristics of, 516
corrosion, 517
for engines oils, 757
destruclive coating, solid lubricants and, 464
diffusive wear, 888
digital contact thermometers (DCTs), 1152, 1269, 1273 (figure), 1275–1277, 1276 (table), 1276 (figure), 1277 (figure), 1277 (table), 1277 (figure)
differential scanning calorimeter (DSC), 314
differential scanning calorimetry
petroleum waxes and, 92, 94, 96 (figure), 97–98, 97 (figure)
transition temperatures and, 103–104, 105 (figure)
diffuse reflectance IR spectroscopy, 1130, 1130 (figure)
diffusion, asphaltene, 46
diffusion coating, solid lubricants and, 464
diffusive wear, 888
digital contact thermometers (DCTs), 1269, 1273 (figure), 1275–1277, 1276 (figure), 1276 (table) 1277 (figure), 1507
dialkylo hydrogen phosphite (DLHP), 454, 455 (figure)
diluents, for engine oils, 757
dilution test, of used oil, 32
dimethyl ether (DME), 153–154
dip-cup viscometers, 1494 (figure)
diphenylaminophenolics, antioxidants and, 386, 387 (figure)
dipropylene glycol dehydration units, 1446, 1447 (figure)
diesel particulate filters (DPFs), 271
distillation. See also crude oil, volatility ASTM standards for
distillation of
diesel fuel oils, 244
of fuel oils, 1331–1332, 1331 (table)
GC and simulated, 1111–1113
of heat transfer fluids, 969–970, 970 (figure)
hydrotreating and, 34, 35 (figure)
of mineral oil base stocks, 286–287
vacuum, 286
volatility ASTM standards for
ASTM D86, 1172–1173, 1172 (figure), 1173 (figure),
1174 (table), 1175 (table), 1176 (table), 1177 (table),
1178 (table), 1180 (table)
ASTM D850, 1173–1174, 1174 (table), 1176,
1178 (table), 1180 (table)
ASTM D1078, 1174 (table), 1176–1178, 1179 (table),
1180 (table)
ASTM D1160, 1179, 1181–1182, 1182 (figure), 1183 (table),
1184 (table), 1186 (table), 1187 (table), 1189 (table),
1190 (table), 1192 (table), 1193 (table)
ASTM D7344, 1178–1179, 1180 (table)
ASTM D7345, 1179, 1181 (table)
importance of, 1171–1172
international standards compared to, 1182, 1193 (table)
distillation fractions, 1–2
distortionless enhanced polarization transfer (DEPT) pulse sequences, 1141–1142, 1141 (figure), 1142 (figure)
2,6-diteriarybutyl-4-methylphenol, 600, 600 (figure)
dithiocarbamates, 447
dithiocarbamic acid derivatives, synthesis of, 450 (figure)
double bond equivalents (DBEs), 1158–1159, 1159 (figure)
downhole heaters, 66
Dowson equation, EHD lubrication and, 1600–1602
drag reducer additive (DRA), 1120
drawing, metal-forming, 868, 893 (table), 894 (table), 895 (table)
Draayton agitation system, 998–999, 998 (figure)
drilling operations, machining, 866
driveability index, 197–198, 198 (figure)
driveline lubricant additives, 358–359
dropping point, lubricating grease heat resistance and, 946–947, 946 (figure)
“dry” gas, 147
dry machining, 889–890
dyed diesel fuel, 264
dyes, 495
metalworking and machining fluids and, 914
dynamic seals test, for gear lubricants, 749
dynamic viscosity, 1486

E
Eaton-Vickers 35VQ/25V vane pump test, 658–659
eco-labeling, of lubricants, 499, 499 (figure), 500
eco-toxicity assessments, 1558
Edgar, Graham, 180
elastic, definition of, 1487
elastohydrodynamic (EHD) lubrication, 540, 1599–1600, 1600 (figure)
Dowson equation and, 1600–1602
film thickness and, 1600–1602, 1603 (figure)
mixed-, 1603
non-Newtonian and micro-, 1602–1603
elastomer compatibility
CI-4/CI-4 PLUS engine oils and, 831
GF-5/SN and, 791
for heat transfer fluid system, 971
of hydrocarbon base oils, 318
lubricating greases and, 953–954
of turbine lubricating oils and hydraulic fluids, 631, 631 (table)
end film generation, Hertzian contact and, 1634–1635, 1634 (figure)
energy content
of diesel fuel oils, 257–258, 257 (table)
of gasoline, 191
energy-efficient technologies, 431, 432 (table)
energy equation, 1325
Energy Policy Act, 1992, 186
Energy Policy Act, 2005, 186
energy release rate, combustion and, 1282
engine deposits, effects on ONR, 195
engine design parameters, ONR, 194
engine lubricants
cold flow properties of, 1528–1529, 1529 (table)
low-temperature pumpability of, 1531–1535, 1531 (figure), 1532 (figure), 1533 (figure), 1534 (figure)
engine oil additives, 358, 757
engine oils. See also heavy-duty diesel engine oils
ACEA system of, 754, 839, 841
API system of, 754–755
ASTM tests for, 758–759
oxidation testing, 1385–1387, 1386 (figure), 1387 (figure), 1389 (figure)
CH-4, 797
bench tests, 798 (table)
Caterpillar 1K test, 800 (table)
Caterpillar 1N test, 800 (table)
Caterpillar 1P test, 799 (table)
Caterpillar 1R test, 800 (table)
Caterpillar C13 test, 801 (table)
Caterpillar Oil Aeration Test, 801 (table)
Cummins ISB, 801 (table)
Cummins ISM, 801 (table)
Cummins M11 300 h Extended Test, 801 (table)
Cummins M11 EGR, 801 (table)
Engine Oil Aeration Test, 803 (table)
engine tests, 799 (table)
HFRR tests, 799 (table)
HTCBT tests, 799 (table)
Mack T-8 (250 h), 802 (table)
Mack T-8E (300 h Extended Test), 802 (table)
Mack T-9, 802 (table)
Mack T-10, 802 (table)
Mitsubishi 4D34T, 803 (table)
OM 364 LA, 803 (table)
OM 441 LA, 803 (table)
OM 602 LA, 804 (table)
Sequence IIIE, 803 (table)
Sequence IIII, 803 (table)
Sequence IIIG, 803 (table)
CI-4/CI-4 PLUS
Allison Graphite and Paper Friction Test, 830 (table)
API user language, 797
bench tests, 805 (table), 821 (table), 833
Caterpillar 1K test, 807 (table), 824 (table)
Caterpillar 1N test, 808 (table), 824 (table)
Caterpillar 1P test, 807 (table), 823 (table)
Caterpillar 1R test, 797, 808 (table), 823 (table), 831
Caterpillar 13 test, 825 (table)
Caterpillar C13 test, 808 (table)
Caterpillar Oil Aeration Test, 808 (table), 825 (table)
Caterpillar SEQU1220 test, 830 (table)
Caterpillar SEQFRRET test, 830 (table)
Cummins ISB test, 809 (table), 825 (table)
Cummins ISM test, 808 (table), 825 (table)
Cummins M11 300 h Extended Test, 809 (table), 825 (table)
INDEX

1727

Cummins M11 EGR Test, 797, 809 (table), 825 (table)
elastomer compatibility, 831
Engine Oil Aeration Test, 811 (table), 828 (table)
engine tests, 807 (table), 823 (table), 833
HFRR test, 807 (table), 823 (table)
HTCBT test, 807 (table), 823 (table)
HTHS viscosity, 831
introduction, 833
Mack T-8E (300 h Extended Test), 809 (table),
826 (table)
Mack T-8 (250 h) Test, 809 (table), 826 (table)
Mack T-9 Test, 809 (table), 826 (table)
Mack T-10 Test, 797, 810 (table), 827 (table)
Mack T-11/T-11A Test, 810 (table), 827 (table)
Mack T-12 Test, 811 (table), 827 (table)
Mack T-13 Test, 811 (table), 828 (table)
MIL-PRF-2104J/MIL-PRF-2104K compared to,
821 (table)
Mitsubishi 4D34T, 811 (table), 828 (table)
OM 364 LA, 812 (table), 829 (table)
OM 441 LA, 812 (table), 829 (table)
OM 602 LA, 812 (table), 829 (table)
oxidation, 831
Roller Follower Wear Test, 811 (table), 828 (table)
Sequence IIIE, 811 (table), 828 (table)
Sequence IIIF, 811 (table), 829 (table)
Sequence IIIG, 820 (table)
Volvo D12D460, 811 (table), 828 (table)

CJ-4
API user language, 834
bench tests, 813 (table)
Caterpillar 1K, 815 (table)
Caterpillar 1L, 815 (table)
Caterpillar 1R, 815 (table)
Caterpillar C13, 816 (table), 834
Caterpillar Oil Aeration Test, 816 (table)
Cummins ISB, 817 (table), 834
Cummins ISM, 816 (table), 834
Cummins M11 300 h extended test, 817 (table)
Cummins M11 EGR, 817 (table)
drivers for development, 833–834
early performance assessment, 835
Engine Oil Aeration Test, 819 (table)
fired-engine tests, 834–835
HFRR test, 815 (table)
HTCBT test, 815 (table)
Mack T-8E (300 h Extended Test), 817 (table)
Mack T-8 (250 h) Test, 817 (table)
Mack T-9 Test, 817 (table)
Mack T-10 Test, 818 (table)
Mack T-11/T-11A Test, 818 (table)
Mack T-12 Test, 818 (table), 835
Mack T-13 Test, 819 (table)
Mitsubishi 4D34T, 819 (table)
OM 364 LA, 820 (table)
OM 441 LA, 820 (table)
OM 602 LA, 820 (table)
Roller Follower Wear Test, 819 (table)
Sequence IIIE, 819 (table)
Sequence IIIF, 819 (table)
Sequence IIIG, 820 (table)
Volvo D12D460, 819 (table)

CK-4, 837–838
composition of
diesel engine improvements, 761 (figure), 762–763,
762 (figure)
gasoline engine improvements, 760–762, 760 (figure)

GM-5/SM
aeration test, 789 (table)
bench tests, 772–773, 773 (table), 774 (table), 775 (table)
fired-engine tests, 772, 772 (table), 777 (table)
GM aeration test, 780 (table)
GM pre-ignition test, 780 (table)
GM turbocharger deposits test, 780 (table)
MB M111 fuel economy test, 779 (table)
oil release test, 780 (table)
Peugeot TU3M wear test, 779 (table)
properties, 774 (table)
Sequence IIIGM wear test, 779 (table)
Sequence IIIG, 777 (table)
Sequence IIIGA, 777 (table)
Sequence IVA, 778 (table)
Sequence V, 778 (table)
Sequence VIB, 778 (table)
Sequence VID, 779 (table)
Sequence VIE, 779 (table)
Sequence VIII, 779 (table)
valve-train wear test, 780 (table)

GM dexos® specifications for, 791–792
GM GEOS specifications for, 791
heavy-duty, 272, 321
environmental characteristics, of fuels and lubricants
abiotic degradation and, 1544
accumulation processes and, 1549–1550
adsorption and desorption and, 1542
ASTM standards for, 1560–1561
biodegradation and, 1544–1549, 1545 (table), 1547 (table), 1549 (figure), 1550 (figure)
chemical structure and, 1540, 1541 (table)
complex mixture toxicity and, 1555–1556
dissociation constant and, 1542
exposure and, 1551, 1554–1556
hazards and risk in, 1558
HLC and, 1541–1542
hydrolysis and, 1544
low solubility and, 1554–1555, 1554 (figure)
octanol-water partition coefficient and, 1540–1541
photolysis and, 1544
phototoxicity and, 1544
standardized testing
methods of, 1551, 1551 (figure), 1552 (table)
rational for, 1539–1540
toxicity tests, 1552 (table), 1556–1558, 1557 (figure)
terminology of, 1559–1560
transformation processes and, 1543–1544
transport processes and, 1543, 1543 (figure), 1543 (table)
vapor pressure and, 1541
volatility and, 1554
water solubility and, 1541, 1542 (figure)
environmental compatibility, of metalworking and machining fluids, 922
environmentally acceptable ester-based hydraulic fluids
alcohol bonds and, 555–556, 556 (figure)
ASTM standards for, 575–576
carboxylic acids and, 556–557, 557 (figure)
certification of, 574, 575 (figure)
classifications of, 675–676, 675 (table)
DIN standards for, 576–577
ecological tests for, 574, 574 (figure)
functional groups of, 555, 555 (figure)
functions and requirements of, 553–554, 554 (figure)
future developments for, 574–575
hydrolysis aging test rigs for, 570–574, 571 (figure), 572 (figure), 573 (figure)
hydrolysis and, 558–560, 559 (figure), 560 (table)
hydrolytic stability of, 560–570, 570 (figure), 571 (figure)
ISO standards for, 576
low-temperature properties of, 564–566, 565 (figure)
lubrication and, 564, 564 (figure)
mineral oil mixtures with, 566
oxidation stability of, 560–561, 560 (figure), 561 (figure), 567–569, 568 (figure), 569 (figure)
resources and production of, 561–563, 562 (table), 563 (figure)
rheological properties of, 557–558, 558 (figure)
structure–performance considerations of, 561, 562 (table)
types of, 554–555, 554 (table)
verification of, 566–567, 567 (figure)
viscosity and, 564, 564 (figure)
environmentally acceptable lubricants (EALs), 522, 529, 548, 1539
hydrocarbons as, 847
environmentally assisted cracking (EAC), 1464–1465
Environmental Protection Agency (EPA), 182, 499
EALs and, 522, 548
used oil criteria of, 922–923
used oil regulatory definition of, 297
VGP and, 522, 548, 548 (table)
equations of state (EOS)
of asphaltene phase behavior, 53–55, 54 (figure)
for petroleum waxes, 88–89, 91–92, 91 (table), 93 (table),
94 (table), 95 (table)
equipment calibration tests, 1707
equivalent circle diameters, particle counting and, 1218, 1219
(table)
Ernst angle, 1144
erosion
corrosion, 1430–1431, 1430 (figure)
definition of, 366
wear, 1584–1585, 1585 (figure)
ester dispersants, 392, 398, 399 (figure)
esterification, 513, 514 (figure), 515
ester polymers
comparison of, 491 (table)
degradation-related viscosity loss and, 487–488, 490 (figure)
mechanical shear and, 483
shear-related viscosity loss and, 484–487, 486 (figure), 487 (figure), 488 (figure), 489 (figure)
structures of commercially available, 484 (table)
synthesis of, 481–484, 482 (figure), 483 (figure)
thickening efficiency and, 484, 485 (figure)
esters. See also environmentally acceptable ester-based hydraulic fluids
benefits of, 843–844
historical development of, 844, 844 (table)
estolides, 847, 847 (table)
ethe, 153. See also liquefied petroleum gas
decomposition of, 336, 339
ethylen from, 336
from methane, 336
ethanol
gasoline blending with, 200
history of, 185
in propane, 163
Ethanol Flex Fuel (E85), 186
ethylene
ASTM test methods and characterization of, 344
from ethane, 336
feedstock for, 334
to finished product diagram, 334 (figure)
historical production of, 333
oligomerization of, 410–411
production capacity for, global, 333, 338 (table)
from propane, 336, 339
thermophysical properties of, 343 (table)
ethylene-propylene-diene monomer-derived copolymers (EPDMs), 478, 479
ethylene-propylene rubbers (EPRs), 478, 479
ethyl mercaptan (EtSH) odorants, 167, 169, 173
European Automobile Manufacturers Association (ACEA), 353, 359
evaporation
of compressor lubricants, 705, 705 (figure)
loss, lubricating grease heat resistance and, 947
exhaust after-treatment systems, detergents and, 429, 429 (figure)
exhaust gas recirculation (EGR), 355, 797, 1285, 1294
exansion joints, for heat transfer fluid system, 972
exposure, environmental characteristics and, 1551, 1554–1556
extreme-pressure (EP) agents
alkyl and aryl phosphate synthesis and, 448, 451 (figure)
alkyl and aryl phosphate synthesis and, 448, 451 (figure)
ASTM standards for, 1692–1693
for automotive engine lubricants, 767–768
automotive service ratings and, 443, 444 (figure)
AWNPs and, 452–453, 453 (figure), 453 (table)
biodegradability of, 461, 462 (table)
boundary film formation of, 456–458, 456 (figure), 457 (figure), 458 (figure)
boundary lubrication and, 449, 452 (table), 1612–1613, 1613 (figure)
chemical reactivity compared to load-carrying capacity and, 454, 455 (figure), 456
chlorine, 453, 458, 459 (figure)
common organophosphorus compounds as, 444, 445 (figure)
for compressor lubricants, 698–699, 699 (table)
conjunction temperature and protection requirements of, 449, 452 (figure)
controlled wear of rough surfaces by, 458, 458 (figure)
dithiocarbamic acid derivative synthesis and, 450 (figure)
effectiveness of, 460, 461 (table)
fatty acid and organic phosphate combined, 458, 459 (figure)
film formation by, 444
for gear lubricants, 729, 733 (table)
hydraulic fluids and, 659
load and, 453, 454 (figure)
lubricating greases and, 950–952, 951 (figure)
metalworking and machining fluids and, 905–910, 906 (figure), 907 (figure), 908 (figure), 909 (figure), 910 (figure), 910 (table)
olein sulfurization and, 447–448, 448 (figure), 448 (table), 449 (figure), 450 (figure)
oxidation of, for gear lubricants, 747
passive, 909
phosphorus content and, 454, 455 (figure)
structures of, 443, 606 (figure), 906 (figure)
sulfur, 458, 459 (figure), 908–909, 908 (figure), 909 (table) sulfurized products for greases and, 448, 448 (table)
synergism of, 458, 459 (figure), 460–461, 460 (figure)
thermal activation of, 1611, 1611 (figure)
tribology terms of, 460, 461 (table)
for turbine lubricating oils and hydraulic fluids, 605–608, 606 (figure), 607 (figure), 608 (figure)
types of, 447–448
extremum-pressure (EP) oils, 728, 729 (table)
extrusion, metal-forming, 868
Exxon donor solvent coal liquefaction process, 119–120, 122, 123 (figure)

F
falling viscometer, 1488–1489, 1489 (figure)
FAME (fatty acid methyl ester), 357
fatigue wear, 1433, 1586, 1586 (figure), 1587 (figure)
fatty acids, 414–416
EP agent combining organic phosphate and, 458, 459 (figure)
fatty acid test, of used oil, 32
FCCU DO, 1340, 1343–1344
Federal Test Procedure (FTP) emission bin standards, 185
Feret diameters, particle counting and, 1218, 1218 (table)
ferrite, 977, 978 (figure)
ferrous corrosion inhibitors, 189
fiber-reinforced polymers (FRPs), 1246–1247, 1248 (figure)
filling operations, machining, 866
filler, 1345
film boiling (FB)
factors influencing, 986, 987 (figure), 988, 988 (figure), 988 (table)
shock, 988
film-forming agents, 363–364, 468
detergents and, 429–430, 429 (figure), 430 (figure)
machining of, 1265–1267, 1266 (figure)
machining and machining fluids and, 904
film-strength testing machines, 886–887, 886 (figure)
film thickness
 EHD lubrication and, 1600–1602, 1603 (figure)
 of IL lubricants, 1041–1042
filterability, of hydraulic fuels, 663–664
filter bowl compatibility test, for compressor lubricants, 716
filter plugging, fouling and, 1247–1249, 1248 (figure),
 1249 (figure), 1250 (figure)
filter-separators, 230–231, 230 (figure)
filtration, for contamination removal, 924
filtration technique, for asphaltene precipitation onset pressure, 49
final boiling point (FBP), 1
filtration, for contamination removal, 924
filtering, for contamination removal, 924
filter plugging, fouling and, 1247–1249, 1248 (figure),
 1249 (figure), 1249 (figure), 1249 (figure)
filter bowl compatibility test, for compressor lubricants, 716
filterability, of hydraulic fuels, 663–664
filtering, for contamination removal, 924
filter plugging, fouling and, 1247–1249, 1248 (figure),
 1249 (figure), 1249 (figure)
filterability, of hydraulic fuels, 663–664
filtering, for contamination removal, 924
filter plugging, fouling and, 1247–1249, 1248 (figure),
 1249 (figure), 1249 (figure)
filterability, of hydraulic fuels, 663–664
filtering, for contamination removal, 924
filter plugging, fouling and, 1247–1249, 1248 (figure),
 1249 (figure), 1249 (figure)
filterability, of hydraulic fuels, 663–664
filtering, for contamination removal, 924
filter plugging, fouling and, 1247–1249, 1248 (figure),
 1249 (figure), 1249 (figure)
filterability, of hydraulic fuels, 663–664
filtering, for contamination removal, 924
filter plugging, fouling and, 1247–1249, 1248 (figure),
 1249 (figure), 1249 (figure)
filterability, of hydraulic fuels, 663–664
filtering, for contamination removal, 924
filter plugging, fouling and, 1247–1249, 1248 (figure),
 1249 (figure), 1249 (figure)
filterability, of hydraulic fuels, 663–664
filtering, for contamination removal, 924
filter plugging, fouling and, 1247–1249, 1248 (figure),
 1249 (figure), 1249 (figure)
filterability, of hydraulic fuels, 663–664
filtering, for contamination removal, 924
filter plugging, fouling and, 1247–1249, 1248 (figure),
 1249 (figure), 1249 (figure)
filterability, of hydraulic fuels, 663–664
filtering, for contamination removal, 924
filter plugging, fouling and, 1247–1249, 1248 (figure),
 1249 (figure), 1249 (figure)
filterability, of hydraulic fuels, 663–664
filtering, for contamination removal, 924
filter plugging, fouling and, 1247–1249, 1248 (figure),
 1249 (figure), 1249 (figure)
filterability, of hydraulic fuels, 663–664
filtering, for contamination removal, 924
filter plugging, fouling and, 1247–1249, 1248 (figure),
 1249 (figure), 1249 (figure)
metalworking and machining fluids and, 912–913, 913 (figure) for turbine lubricating oils and hydraulic fluids, 607–608, 608 (figure)
Ford Mercon ABOT, 1388, 1390 (figure), 1390 (table)
 forging, metal-forming, 868
 formulators, 359
 fossil fuels, biomass and, 139–140
 fouling, biodeterioration and, 1247–1251, 1248 (figure), 1249 (figure), 1250 (figure), 1251 (figure)
 four-ball test, 654, 658, 658 (figure), 708, 746, 1682–1683, 1683 (figure)
 four-ball tests, 1681, 1682 (figure)
 four-ball EP test, 747, 950–951, 951 (figure), 1683, 1683 (figure)
 fouling, biodeterioration and, 1247–1251, 1248 (figure), 1249 (figure), 1250 (figure), 1251 (figure)
 freezing point, of aviation fuels, 1524–1525, 1525 (figure), 1526 (figure)
 free water of, 1534–1535
 free water
 freezing point, of aviation fuels, 1524–1525, 1525 (figure), 1526 (figure)
 fretting wear, 951, 1587–1588, 1587 (figure), 1588 (figure)
 friction. See also tribology test systems
 adhesion and, 1567
 ASTM standards for, 1691–1692
 automotive engine lubricants reduction of, 841
 additives, 848–849, 850 (figure), 851 (figure)
 alternative base stocks, 842–846, 843 (figure), 844 (table), 845 (figure), 846 (figure)
 estolides, 847, 847 (table)
 hydrocarbons, 846–847, 847 (figure)
 low and ultra-low engine oils, 847–848, 848 (table), 849 (figure)
 thin-film coatings, 849, 850 (figure), 851 (figure), 852
 tribological testing of Stiebeck curves, 853, 854 (figure), 855 (figure)
 uncoated steel, 852–853, 852 (figure)
 coefficient of, 108–109, 1565–1566, 1566 (figure)
 coefficient of kinetic, 108–109, 1565–1566, 1566 (figure)
 definition of, 1565
 deformation and, 1567
 DIN standards for, 1693
 fluid, 871
 internal, 871
 ISO standards for, 1693
 kinetic, 871
 lubrication and, 1565–1567, 1566 (figure), 1566 (table), 1567 (figure)
 MFC, MFR and, 1616–1618, 1617 (figure), 1618 (table), 1619 (figure)
 ploughing and, 1567, 1568 (figure)
 solid, 871
 true area of contact in, 1566–1567, 1566 (figure)
 friction modifiers, 430–432
 adsorption and, 1611, 1611 (table)
 ashless, 440
 ATFs and, 434, 436 (figure), 442
 for automotive engine lubricants, 766
 boundary lubrication and, 1606
 comparison of, 437–438, 440, 440 (figure), 441 (figure)
 cranking torque and, 441, 442 (figure)
 effect of, 433–434, 436 (figure)
 for engine oils, 757
 engine power loss and, 440–441, 441 (figure)
 friction coefficients and film breakdown temperatures in, 437, 440 (table)
 fuel economy and, 433, 435
 for gear lubricants, 730
 gear oils and, 442–443, 442 (table), 443 (figure)
 lubrication as, 870–871
 materials used for, 434–435
 metal surfaces and, 436–437, 437 (figure), 438 (figure), 439 (figure)
 metalworking and machining fluids and, 904–905, 904 (figure), 905 (figure)
 molecular mass and coefficient of friction in, 437, 439 (figure)
 organomolybdenum compounds as, 849
 role of, 433, 435 (figure)
 temperature and adsorption of, 437, 439 (figure)
 fuel cleanliness testing, 1215
 fuel economy
 of alternative base stocks, 844–845, 845 (figure)
 ASTM tests for, 432, 432 (table)
 automotive engine design improvements for, 769–772
 average car mileage and, 1978–2014, 431, 431 (figure)
 diesel engines and, 431, 1291
 improvements of, 761 (figure), 762–763, 762 (figure)
 energy-efficient technologies and, 431, 432 (table)
 engine oils and, 322
 diesel engine improvements, 761 (figure), 762–763, 762 (figure)
 gasoline engine improvements, 760–762, 760 (figure)
 friction modifiers and, 433, 435
 future trends in, 840 (figure)
 lubricants and, 356
 MB M111 test of, 779 (table), 789 (table)
 resource conserving and, 431–432
 shutdown time, start-up wear and, 432, 433 (figure)
 standards for, 431
 viscosity and, 432–433, 433 (figure), 434 (figure)
 volatility and, 432, 434 (figure)
 fuel injection splitting, in diesel engines, 1293–1294, 1293 (figure)
 fuel injector deposits, 189
 fuel injector shear stability test (FISST), 1512, 1512 (figure)
 fuel oils. See also diesel fuel oils; environmental characteristics, of fuels and lubricants; fuel properties and test methods
 API gravity of, 1328–1330
 ASTM standards for, 1328, 1329 (table), 1355–1358
 carbon residue in, 1331 (table), 1332
 distillation of, 1331–1332, 1331 (table)
 flash point of, 1331, 1331 (table)
 grades of, 1327
 heating value of, 1330, 1330 (figure)
 instability and incompatibility of, 1333
 oxidation stability of distillate, 1393, 1394 (figure), 1395–1396, 1395 (figure)
 pour point of, 1331
 requirements for, 240 (table)
 specifications of, 7–8, 8 (table), 239, 239 (table), 1327–1328, 1328 (table), 1329 (table)
 storage stability of distillate, 1393–1394, 1395 (figure)
 sulfur in, 7–8, 1331 (table), 1332–1333
 viscosity of, 1330–1331, 1331 (table)
cleanliness, 250–253, 251 (table), 252 (table)
cloud point, 248–249
conductivity, 262, 263 (figure)
copper corrosion, 262–263
density, 247
distillation, 244
energy content, 257–258, 257 (table)
flash point, 244–247, 247 (table)
ignition quality, 260–262
low temperature operability, 248–250, 249 (figure)
lubricity, 255–256
pour point, 249–250
stability, 253–255, 253 (figure), 255 (figure)
sulfur, 258–259, 259 (table)
viscosity, 244
volatility, 244
fuels and fuel systems condition monitoring, biodeterioration and, 1255–1258, 1256 (figure)
fuses, aviation fuel quality control and, 231
FZG test, 606–607, 607 (figure), 658, 658 (figure), 708
for gear lubricants
PITS, 749
scuffing, 747–748
rig, for tribology component test, 1689–1691, 1690 (figure), 1691 (figure)
gassing, adhesive wear and, 1578–1579, 1582 (figure)
galvanic corrosion, 1431, 1585
gas chromatography (GC)
ASTM standards for, 1120–1123
analytical methods, 1113–1117
- crude oils, 1119
hydrocarbon analysis, 1117–1118
lubricants and in-service engine oils, 1118–1119
simulated distillation methods, 1111–1113
for butadiene, 345
for butylene, 345
drag reducer additive and, 1120
future developments in, 1120
historical development of, 1110–1111
for hydrocarbon base oil analysis, 306
LPG composition and, 155
NMR spectroscopy compared to, 1137
petroleum waxes composition by, 106–107
for propylene, 344–345
two-dimensional, 1155
for volatility, 313
gas chromatography and vacuum ultraviolet detection
(GC-VUV), 1115
gas chromatography-mass spectrometry (GC-MS), 1119–1120
gas compression cycle, 684–687, 685 (figure), 686 (figure)
gas compressors
hypercompressors, 689–690
reciprocating, 687–688, 688 (figure), 689 (table)
rotary, 690–692, 690 (figure), 691 (figure), 692 (figure)
types of, 687, 687 (figure)
gas hydrates, 160–162
gasification, 24
gas laws, 683–684, 684 (table)
gas-line antifreeze, 188
gasoline. See also ASTM standards, D4814; methanol-to-gasoline process
additives to, 188–190
adiabatic flame temperature of, 202
air-fuel ratio and stoichiometry of, 190–191
alkyl lead compounds added to, 188
ASTM D4814 for, 196–202
ASTM standards for, 204–206
autoignition temperature of, 202
aviation additives, 228, 228 (table)
combustion and, 219–220
contaminants in, 230, 230 (table)
engines for, 212, 215
flammability of, 222–223, 223 (figure), 223 (table)
high aromatic content unleaded hydrocarbon, specifications for, 212, 213 (table)
history of, 209, 212
hydrocarbon unleaded, specifications for, 212, 212 (table)
knock resistance, 220
leaded, specifications for, 210 (table)
in low temperature environment, 217
manufacturing of, 225–226
unleaded, specifications for, 211 (table)
volatility of, 221
water content in, 217, 218 (figure), 219
casinghead, 150
“cat,” 10
combustion, 190–191
composition of, 186–187
density of, 203–204
dielectric constant and, 203–204
energy content of, 191
ethanol blending with, 200
flammability of, 202–203
gum content in, 1390–1391, 1392 (figure)
heat capacity, thermal conductivity, and heat of vaporization of, 203
history of, 5–6, 6 (table)
alkyl lead, 180–182
Clean Air Act, 1963, 181
Clean Air Act, 1970, 182
Clean Air Act Amendments, 1977, 182
Clean Air Act Amendments, 1990, 6, 183–184, 264
ethanol, 185
led gasoline, 179–180
leaded, specifications for, 210 (table)
on-line analyzer octane rating, 194
2004+ vehicle and fuel regulation, 184
unleaded gasoline, 182
vehicle ONRs, 182–183
vehicle emission standards, 181
HoC of, 191, 202
hydrocarbons in, 186–187, 187 (table)
iron based organo-metallics in, 189
MMT added to, 188
MTG process yields and properties of, 132, 132 (table)
octane number performance properties of
- AI, 192–193, 193 (table)
- combustion and knock in engines, 191–192
- MON ASTM standards, 193, 193 (table)
octane distribution through fuel boiling range, 194
- on-line analyzer octane rating, 194
- RON ASTM standards, 193–194, 193 (table)
- vehicle ONRs, 194–196
oxidation stability of, 1392, 1392 (figure), 1393 (figure)
oxidation testing of
- ASTM D381, 1390–1391, 1392 (figure)
- ASTM D525, 1391, 1392 (figure), 1393 (figure)
- ASTM D873, 1392–1393
- ASTM D2274, 1393, 1394 (figure), 1395 (figure)
- ASTM D3241, 1393
- ASTM D4625, 1393–1394, 1395 (figure)
ASTM D6468, 1394–1395
ASTM D7525, 1395
ASTM D7545, 1396
IP-467, 1396
Rancimat test, 1396
oxygenates added to, 5, 5 (table), 183–184, 187, 188, 188 (table)
performance additives in, 189–190
reformulated, 183–184
refractive index of, 203–204
static electricity and, 203
trace constituents and contaminants in, 190
unleaded, 182
vehicle and fuel regulations, current, 184–186
viscosity and lubricity of, 203

gasoline direct injection (GDI) engines, 185
LSPI test for, 770–771, 771 (figure)
timing chain-wear test for, 771, 771 (figure)
gasoline engines, fuel economy improvements of, 760–762, 760 (figure)
gas-phase contaminants, pipeline corrosion control of, 1444–1445, 1445 (figure)
Gas Processors Association (GPA), 150–152
olefin standards of, 349
Gas Processor Suppliers Association (GPSA), 151
gas solubility
in compressor lubricants, 324, 700, 700 (figure), 701 (figure), 702 (figure), 703 (figure), 711–715, 713 (figure), 713 (table), 714 (table), 715 (figure), 716 (figure)
of hydrocarbon base oils, 319, 319 (table)
in petroleum oil, 711–714, 713 (figure), 713 (table), 714 (table)
gas-to-liquid (GTL) base stocks
benefits of, 293
oxidation stability of, 296, 297 (figure)
steps of, 293, 294 (figure), 295
viscosity of, 295–296, 296 (figure)
volatility of, 295, 296 (figure)
gas turbine fuel oils. See also fuel properties and test methods
combustor air distribution in, 264, 265 (figure)
industrial compared to aviation, 264–265
PAGs and, 522
requirements for, 245 (table)
specifications of, 239, 242
trace metal limits in, 265–266, 265 (table)
gas turbines, 582–583, 583 (figure)
aero-derivative, 585–586
heat input and removal for, 586, 588 (figure)
lubrication system for, 587 (figure)
gated spin echo (GASPE) pulse sequences, 1142
gauge hatches, 1056
Gavrilov, Sergei, 333
gear mesh contact test, 1688, 1688 (figure)
gear lubricants
additives for, 728
antiwear agents, 729–730, 733 (table)
chemically active, 731 (table)
chemically inert, 732 (table)
detergents, 730, 734 (table)
dispersants, 730, 734 (table)
EP agents, 729, 733 (table)
miscellaneous, 736 (table)
antioxidants for, 730–731, 735 (table)
API service designation for, 737–738, 737 (table), 738 (table), 739 (table)
ASTM tests for
acid number, 745
air release, 749
base number, 747
CCS viscosity, 748
channel point FTM, 749
chlorine, 746
compatibility, 749
copper strip tarnish test, 743
corrosion, 749
cyclic durability test, 748
demulsibility, 747
dynamic seals test, 749
elemental content, 747
flash and fire points, 743
foaming, 746
four-ball EP test, 747
four-ball wear test, 746
FZG test, PITS, 749
FZG test, scuffing, 747–748
gear scoring test, 749
GPC oxidation test, 748
gravity, 744
high temperature foam inhibition, 748
insolubles, 746
low-speed high torque hypoid test, 748
low-temperature properties, 747
nitrogen, 747
oxidation of EP oils, 747
phosphorous content, 746
pour point, 743
precipitation number, 742–743
rust inhibition, 746
seal compatibility, 748
shear stability, 749
standards, 750–751
storage stability, 749
sulfur, 746
synchronizer SSP 180 test, 748–749
thermal and oxidation stability, 748
Timken EP tester, 746–747
VI, 746
viscosity, 744
water content, 746
automotive
historical development of, 732–733, 737 (table)
viscosity of, 332 (table)
base stocks for, 731, 737 (table)
compound oils, 728, 729 (table)
corrosion inhibitors for, 731
demulsifiers for, 731
early, 721, 722 (table)
emulsifiers for, 731
EP oils, 728, 729 (table)
foil inhibitors for, 730, 748
friction modifiers for, 730
function of, 721–722
greases, 728, 729 (table)
industrial, 741–742, 743 (table), 744 (table), 745 (table)
MIL-PRF-2105E classification for, 739, 740 (table)
OEM specifications for, 740–741, 742 (table)
open gear compounds, 728, 729 (table)
polymeric thickeners for, 730–731
PPDs for, 730
R&O oils, 728, 729 (table)
SAE 1306c viscosity classification for, 738, 740 (table)
SAE J2360 classification for, 739–740, 740 (table), 741 (table)
types of, 728, 729 (table)
VI improvers for, 735 (table)
Index

gear oils, 322
cold flow properties of, 1526–1527
corrosion ASTM tests for, 1410
friction modifiers and, 442–443, 444 (table), 443 (figure)
oxidation testing of
 ASTM tests, 1379–1380, 1380 (figure), 1381 (figure),
 1382 (figure)
 CEC tests, 1382, 1382 (table), 1383 (figure), 1383 (table),
 1384 (figure)
 JIS-K2514, 1381, 1382 (table)
gears
 failure modes of, 724–726, 724 (figure), 725 (figure),
 726 (figure)
 lubrication of, 723–724, 726–728, 726 (table), 727 (figure),
 727 (table), 728 (table)
 types of, 722–723, 723 (figure), 723 (table)
gear scoring test, for gear lubricants, 749

gel permeation chromatography (GPC), 392, 1016, 1016 (figure)
gears
gear oils, 322

green coke, 1345–1346, 1346 (figure), 1346 (table)
See greases.
glazing, definition of, 366
glass cell, for pipeline corrosion, 1460, 1462, 1462 (figure)
glass capillary viscometers, 1495
glass cell, for pipeline corrosion, 1460, 1462, 1462 (figure)
glass capillary viscometers, 1495

graphite, 462–463, 463 (figure), 465
graphite electrodes, for electric-arc furnaces, 1354–1355
graphite furnace atomic absorption spectrometry (GF-AAS), 1088
graphitic carbon, 1345
graphitizeable carbon, 1345
graphitizeable heat treatment, 1345
gravimetric technique, for asphaltene precipitation onset pressure,
 48, 48 (figure)
green coke, 1345–1346, 1346 (figure), 1346 (table)
greenhouse gases (GHGs), 271. See also vehicle emissions
 grinding
 abrasive wear and, 1583, 1583 (figure)
 machining operations and, 866
grist, 1345
Grossman hardenability, 983–985, 984 (figure), 984 (table), 985
 (figure), 985 (table)
gross observed volume (GOV), 1066
gross standard volume (GSV), 1066
gum content, in gasoline, 1390–1391, 1392 (figure)

H

H1 grease production, 941
halocarbons, LPG and, 167
halogen test, of used oil, 32
Handbook of Butane-Propane Gases, 151, 152
hardenability, of steel, 980–981, 980 (figure), 981 (figure),
 982 (table)
 measurement of, 982–985, 983 (figure), 984 (figure),
 984 (table), 985 (figure), 985 (table)
hardening power, modified Segerberg, 1000–1001, 1001 (figure)
hardness, 1575
 petroleum waxes and, 102–103, 104 (figure)
heat transfer
 efficiency, compressor lubricants and, 715–716
 hydraulic fluids and, 645, 647 (table)
 heat transfer coefficient (HTC), 959–960, 1002, 1003 (table),
 1020, 1021
heat transfer fluids
 acid number and, 969, 969 (figure)
 ASTM standards for, 972–974
 autoignition temperature of, 968
 carbon residue and, 967–968
 design and construction of systems for, 971–972
 distillation of, 969–970, 970 (figure)
 flash point and, 970
 fluid maintenance tests for, 968–971
 fluid sampling of, 969
 FTC and, 959–960
 insolubles in, 971
 ISO classification of, 959, 961 (table)
 metal content of, 968, 968 (table)
 mineral oil, composition of, 961–965, 962 (figure), 962 (table),
 963 (table), 964 (figure), 964 (table)
 oxidation stability of, 967
 pressure drop and, 961, 961 (table)
 properties of, 959, 960 (table), 965–968, 966 (table)
 pumppability of, 966–967
 rubber and, 968
 safety and, 971
 seals and, 968
hydrorefining, 15, 16 (table)
hydroprocessing
hydrophile-lipophile balance (HLB), 537, 537 (table)
hydrolytic stability
hydrolysis
hydroisomerization, 291–394, 393 (figure)
terminology of, 3–4
hydrocracked base stocks, for turbines, 592–593, 593 (table), 594 (figure)
hydrocracking, 15, 16 (table)
fixed bed, 22, 22 (table)
fluidized bed, 22, 22 (figure), 23 (table)
mineral oil base stocks and, 288–289, 292 (table), 293
hydrodynamic lubrication (HL), 540, 871, 872 (figure), 1599–1600, 1600 (figure)
Petroff’s law and, 1605–1606
hydrofluoric acid (HF) alkylation, 14–15, 15 (figure), 15 (table)
hydrogen
classification of, in organic molecules, 1363–1364, 1365 (figure)
damage, pipeline corrosion and, 1433–1435
finishing, mineral oil base stocks and, 288
microelemental analysis of, 1095–1096
in petroleum fractions, 347
production, 23–24
hydrogen embrittlement (HE), 1433–1434
hydrogen-induced cracking (HIC), 1434–1435
hydrogen sulfide (H₂S)
in crude oil, 1422
LPG and, 166
in pipeline corrosion, 1438–1439
hydroisomerization, 291 (figure)
hydrolysis
environmental characteristics and, 1544
environmentally acceptable ester-based hydraulic fluids and, 558–560, 559 (figure), 560 (table)
hydrolytic stability
beverage bottle test of, 1412, 1412 (figure)
of compressor lubricants, 704
of environmentally acceptable ester-based hydraulic fluids, 569–570, 570 (figure), 571 (figure)
hydraulic fluids and, 659–661
of polyolesters and diesters, 516
of turbine lubricating oils and hydraulic fluids, 625, 625 (figure)
hydroperoxides, 1363
decomposition of
alkyl phosphites and, 378–379
mechanism of, 373, 375 (figure), 377 (figure)
organic sulfoxides and, 373–374, 378, 378 (figure)
phenol and, 377 (figure), 378–379
ZDDPs and, 379, 379 (figure)
oxidation rate and, 374 (figure)
hydrophile-lipophile balance (HLB), 537, 537 (table)
emulsifiers and, 901–902, 902 (figure)
hydroprocessing
options for, 16, 16 (table)
terminology of, 15–16, 16 (table)
unit design in, 16–17, 17 (figure)
yields in, 18, 18 (table)
hydroreforming, 15, 16 (table)
hydrotreating, 2, 15, 16 (table)
distillation and, 34, 35 (figure)
of mineral oil base stocks, 291 (figure), 292 (table)
solvent extraction and, 35, 36 (figure)
hydrotreated base stocks, for turbines, 592–593, 593 (table), 594 (figure)
hydrotreating, 2, 15, 16 (table)
distillation and, 34, 35 (figure)
of mineral oil base stocks, 291 (figure), 292 (table)
performance and, 35, 36 (figure)
high pressure...
Index

insolubles
 in gear lubricants, 746
 in heat transfer fluids, 971
 in lubricants, 1078–1079
Institute of Petroleum (IP), 1694
Institut Francais du Patrole (IFP) process, 299
insulation, for heat transfer fluid system, 971–972
insulation fires, heat transfer fluid safety and, 971
intake valve deposits (IVDs), 189
interfacial tension (IFT), 39
intergranular corrosion, 1431
intergranular stress corrosion cracking (IGSCC), 1432
interlaboratory (round-robin) exchange testing, 1707
internal friction, 871
internal coating, for pipeline corrosion control, 1448–1449
interthermot (FTS) and, 1378–1379
isothermal operation, 684–685, 685 (figure)

I
iron
 based organo-metallics, in gasoline, 189
 carboxylate, antioxidants and, 373, 376 (figure)
 isobutane, auto-refrigeration and, 162
 isomerization, 13, 14 (figure)
 isoctane, 180–181, 181 (table)
 isopropanol, in propane, 163
 isopropyl alcohol (IPA), 188
 jet fuel
 additives, 227–228, 227 (table)
 combustion and, 220–221, 220 (figure)
 contaminants in, 230
diesel, 216–217
 engines for, 215–216, 216 (figure)
 flammability of, 222–223, 223 (figure), 223 (table)
history of, 6, 212, 214 (table)
in low temperature environment, 217, 218 (figure)
 manufacturing of, 226–227, 226 (table)
 product color of, 232
 specifications of, 6, 6 (table), 214 (table)
 viscosity and, 217, 218 (figure)
 visual appearance of, 232
 volatility of, 221–222, 222 (figure)
 water content in, 217, 218 (figure), 219
J
 JIS K2514, 1381, 1382 (table)
 JIS K2515, 1381, 1382 (table)
 John Deere JDQ84A test, 659
 Jominy end-quench test, 982–983, 983 (figure)
 Joule-Thomson (JT) cooling, 162
K
 Karl Fischer Reagent test, 660
 Karl Fischer titrations, 1076, 1076 (figure), 1076 (table)
 Kelvin thermodynamic temperature scale (KTTS), 1507
 Kendrick mass defect (KMD), 1158
 Kerogen, 40
 kerosine, 1–2, 3 (table). See also fuel properties and test methods
requirements for, 246 (table)
specifications of, 242, 245 (table)
 Kerr, A. N., 150
 Kerr, C. L., 150
 Kesternich Cabinet test, 1413, 1414 (figure)
 Kettering, Charles F., 180
 kinematic viscosity, 1486, 1486 (table). See also viscosity
 history of, 1493–1496
 petroleum oil flow properties and, 1489–1493, 1491 (table),
 1492 (figure), 1492 (table), 1493 (figure), 1494 (figure)
temperature relationship to, 1497, 1498 (figure), 1499–1500,
 1499 (figure), 1500 (table)
kinefriction, 871
 Kinetics Technology International (KTI) process, 299–300,
 300 (figure)
 Kohleol process, 122, 123 (table)
 Kolmogorov length scales, 1281
 Komatsu HPV35+35 test, 659
L
 lacquer, 366, 367
 Lambda ratio, 1569, 1569 (table)
 tribology and, 1640
 in WAM testing for micropitting and spalling, 1656–1658,
 1657 (figure), 1658 (figure)
 laminar flame speed, combustion and, 1280
 lapping, abrasive wear and, 1583, 1583 (figure)
laser desorption/ionization (LDI), 1152, 1157
laser technology, for asphaltene deposition prevention, 66, 66 (figure)
lauryl acid phosphate (LAP), 454, 455 (figure)
lead
corrosion, 470
in gas turbine fuel oils, 265 (table), 266
test, of used oil, 33
leaded gasoline, history of, 179–180
lead oxide (PbO), 463
leakage
heat transfer fluid safety and, 971
lubricating grease heat resistance and, 948, 948 (figure)
lean burn technology, 763
Leidenfrost temperature, 985
Liedenfrost effect, 171
light-duty diesel (LDD) vehicles, 796
light-duty engine oils, 754
light extinction particle counting, 1221, 1222 (figure), 1223, 1223 (figure)
light hydrocarbons, 146 (figure), 147 (figure)
light-scattering technique, for asphaltene precipitation onset pressure, 48–49, 50 (figure)
light scatter particle counting, 1223–1226, 1224 (figure), 1225 (figure)
light straight run gasolines (LSRs), 1, 3 (table)
light vacuum gas oils (LVGOs), 2, 3 (table)
limited-additive suppliers, 359
linear reciprocation test, 1688–1689, 1688 (figure)
line contact, Hertzian contact and, 1634
liquefied petroleum gas (LPG)
ASTM standards for, 145, 174–175
DME and, 153–154
history of, 152–153
auto propane and, 169
exposure to, 171–172
flammability and, 170
gas hydrates and, 160–162
handling of, 170–171
history of, 145
industry, 146–149
properties and thermodynamics, 151–152
use, 149–151
icing in systems of, 161
injector systems, 169
odorization, 172–173
safety of, 170–173
sample cylinder approvals for, 171
specifications of
composition, 155
contaminants and, 166–167
corrosion and, 166
density and, 155
H2S and, 166
history of ASTM standards for, 152–153
NORM and, 167–168
octane and, 155
oil stain and, 165
olefins and, 155–156
propane dryness and, 158–165
residual matter and, 165–166
sampling, 154, 164, 348
sulfur content and, 166
vapor pressure and, 155–157
volatility residue, weathering and, 157–158
water content and, 158–165
uses of, 173–174
vapor removal and, 171
volume correction factors and, 168–169
liquefied petroleum gas (LPG)
low-temperature flow test (LTFT), 248–249
low-temperature high-shear viscosity, lubricants and, 1529–1531, 1529 (table), 1530 (figure), 1530 (table), 1531 (figure), 1531 (table)
low-temperature pumpability, of engine lubricants, 1531–1535, 1531 (figure), 1532 (figure), 1534 (figure)
LSPI test, 770–771, 771 (figure), 795–796
lube oil base stock production, 22–23
lubricant films, 873, 873 (figure)
load
capacity
chemical reactivity compared to, 454, 455 (figure), 456
testing, scuffing, 1651–1653, 1652 (figure), 1653 (figure)
EP and, 453, 454 (figure)
in tribology test systems, 1676
lobe compressors, rotary, 690–691, 690 (figure)
localization of, 1428–1430, 1429 (figure)
long-chain chlorinated paraffins (LCCPs), 767–768, 907
long-chain surfactants, 766
low-speed high torque hypoid test, for gear lubricants, 748
low-speed preignition prevention test, 788 (table)
low-temperature flow test (LTFT), 248–249
low-temperature high-shear viscosity, lubricants and, 1529–1531, 1529 (table), 1530 (figure), 1530 (table), 1531 (figure), 1531 (table)
low-temperature penetration, lubricating grease consistency stability and, 944
low-temperature properties. See also cold flow properties
of diesel fuel oils, 248–250, 249 (figure)
of environmentally acceptable ester-based hydraulic fluids, 564–566, 565 (figure)
for gear lubricants, 747
of hydraulic fluids, 668–669, 668 (table)
of hydrocarbon base oils, 314–315
of polyolesters and diesters, 515
of turbine lubricating oils and hydraulic fluids and, 612, 616–617
low-temperature pumpability, of engine lubricants, 1531–1535, 1531 (figure), 1532 (figure), 1534 (figure)
LSPI test, 770–771, 771 (figure), 795–796
lube oil base stock production, 22–23
lubricant films, 873, 873 (figure)
lubricants. See also additives; automotive engine lubricants; environmental characteristics, of fuels and lubricants; gear lubricants; hydrocarbon base oils; ionic liquid (IL) lubricants; synthetic lubricants; turbine lubricating oils and hydraulic fluids additivess and additives and
composition in, 363, 363 (figure), 363 (table)
for engine and nonengine, 495, 496 (table)
properties of, by application, 358 (table)
samples of, 1069, 1071, 1072 (table)
ASTM tests for, 1069, 1070 (table)
 carbon residue, 1077–1078, 1077 (table)
chlorinated solvent elimination in, 1081
foaming, 1079
insolubles, 1078–1079
international methods, 1080–1081
other methods, 1080
proficiency testing programs, 1080
standards, 1081–1083
volatility, 1079–1080
barrier-film, 898
base stocks, 283–284, 285 (table)
 physical properties of, 302, 303 (table)
 viscosity of, 302, 302 (table), 303 (figure)
biodegradable, oxidation testing of, 1399–1400, 1400 (figure)
biodeterioration of, 1243
 biocorrosion/MIC, 1244–1247, 1244 (figure), 1245
 (figure), 1246 (figure), 1246 (table), 1247 (figure),
 1248 (figure)
 condition monitoring for, 1258–1259, 1258 (figure)
correction strategies for, 1264, 1264 (figure)
foiling, 1247–1251, 1248 (figure), 1249 (figure),
1250 (figure), 1251 (figure)
prevention strategies for, 1262, 1263 (figure)
cold flow properties of, 1525
 engine lubricants, 1528–1529, 1529 (table)
 low-temperature high-shear viscosity and, 1529–1531,
 1529 (table), 1530 (figure), 1530 (table), 1531 (figure),
 1531 (table)
 soot-containing, 1535
 turbine lubricants, 1526–1527, 1527 (figure)
 composition of, 272, 273 (figure)
 consumption of, 272–273, 273 (figure)
corrosion ASTM tests for, 1408, 1409 (figure), 1410 (figure),
1410 (table)
desirable properties of, 351–355
development trends of
 in HDDEOs, 354–355
 in PCMOs, 353–354, 353 (figure), 355 (figure)
eco-labeling of, 499, 499 (figure), 500
generation
 cold flow properties of, 1528–1529, 1529 (table)
 low-temperature pumpability of, 1531–1535, 1531 (figure),
 1532 (figure), 1533 (figure), 1534 (figure)
environmentally acceptable, 522, 1539
fuel economy and, 356
gC analysis methods for, 1118–1119
 heavy-duty diesel, 271
 high-temperature degradation model of, 1365, 1369 (figure)
history of, 351
industrial, 322–325, 323 (figure)
corrosion ASTM tests for, 1410–1413, 1411 (figure),
1412 (figure), 1413 (figure), 1414 (figure)
market and demand for, 271–272, 362–365
 microbes in, 1241–1242
 nolengines, 357–358
 oil drain intervals and, 356–357
oxidation of
degradation of, 373, 376 (figure)
 mechanisms of, 1363–1369
oxidation testing of, 1396–1399, 1397 (figure), 1398 (figure)
 properties of, by application, 358 (table)
quality rankings of, 1571–1572, 1572 (figure)
slide-way, 898
solid, 461–465, 463 (figure), 464 (figure), 464 (table), 465 (figure),
466 (table)
solubility of, in compressor lubricants, 700–701, 703 (figure)
soot-containing, cold flow properties of, 1535
titration of
 advantages of, 1071
potentiometric indication of, 1073–1077, 1074 (table),
1076 (figure), 1076 (table)
thermometric, 1081, 1081 (figure)
 visual indication of, 1071, 1073, 1073 (figure), 1073 (table)
tribology test systems and, 1678
 vehicle emission standards and, 355–356
viscosity and, 272, 354, 355 (figure)
lubricating greases, 728, 729 (table)
ASTM tests for, 942
 chemical analysis, 954–955
 compatibility, 954
 consistency, 943–944, 943 (figure), 944 (table)
 consistency stability, 944
 contamination, 953, 953 (figure)
corrosion, 952, 952 (figure)
discontinued standards, 955
elastomer compatibility, 953–954
 EP agents and wear, 950–952, 951 (figure)
 flow properties, 944–946
 heat resistance, 946–948, 946 (figure), 947 (figure),
 948 (figure)
 ignition test, 955
 oxidation stability, 948–950, 949 (figure), 950 (figure)
 oxidation testing, 1382–1385, 1384 (figure), 1385 (figure),
 1386 (figure)
 standards, 957–958
 static bleed test, 954
 water content, 952–953, 953 (figure)
classification and specifications of, 942, 942 (table)
composicion of
 additives and, 939
 base stocks and, 935–937, 936 (table)
 thickeners and, 937–939, 937 (figure)
corrosion ASTM tests for, 1409 (table), 1413–1414, 1414
 (figure), 1415 (figure), 1415 (table)
ISO standards for, 955, 955 (table), 956 (table)
manufacturing of, 939–941
 mineral oil base stocks and, 324–325, 325 (table)
 oxidation testing of, 1382–1385, 1384 (figure), 1385 (figure),
 1386 (figure)
 selection of, 939
structure of, 935, 936 (figure)
sulfurized products for, 448, 448 (table)
lubrication. See also tribology test systems
ASTM standards for, 1621–1622
boundary, 540, 871–872, 1599–1600, 1600 (figure)
 additives and, 443, 449, 452 (table), 1600, 1609–1612,
 1609 (figure), 1609 (table), 1610 (figure), 1611 (figure),
 1612 (table)
 antitrust agents and, 1612, 1612 (figure)
 EP agents and, 449, 452 (table), 1612–1613, 1613 (figure)
 friction modifiers, 1060
 tribochemical wear, material surfaces and, 1606,
 1607 (table)
 tribology TRL, oil types and, 1653–1654, 1654 (figure)
 bulk material properties and, 1574–1577, 1578 (table),
 1579 (figure), 1579 (table)
compressor lubricant requirements for, 701, 703 (table)
elastohydrodynamic, 540, 1599–1600, 1600 (figure)
Dowson equation and, 1600–1602
 film thickness and, 1600–1602, 1602 (table),
 1603 (figure)
mixed-, 1603
non-Newtonian and micro-, 1602–1603
environmentally acceptable ester-based hydraulic fluids and, 564, 564 (figure)
friction and, 1565–1567, 1566 (figure), 1566 (table), 1567 (figure)
as friction modifier, 870–871
for gas turbines, 587 (figure)
of gears, 723–724, 726–728, 726 (table), 727 (figure), 727 (table), 728 (table)
Hertzian contact and, 1600–1605
of HFA and HFB fluids, 540
of HFC fluids, 544
hydraulic fluids and, 645–646
hydrodynamic, 540, 871, 872 (figure), 1599–1600, 1600 (figure)
Petroff’s law and, 1605–1606
IL lubricant mechanism of, 1044–1045
metalworking fluids and, 870–874, 871 (figure), 872 (figure), 873 (figure)
nanoparticles in
chemical composition of, 1615, 1615 (figure), 1615 (table)
importance of, 1613
metal oxides and, 1616, 1616 (table)
metals and, 1616, 1616 (table)
morphology of, 1618–1621, 1619 (figure), 1620 (figure), 1621 (table)
nanocomposites and, 1615–1616, 1616 (table)
rare earth compounds and, 1616–1618, 1617 (figure), 1617 (table), 1618 (figure), 1618 (table)
size of, 1618, 1619 (figure), 1619 (table)
sulfur and, 1615
summary of, 1614, 1614 (table)
new surface structure and, 1574, 1575 (figure)
regime, 873–874, 1599–1600, 1600 (figure)
seizure in, 1595
subsurface structure and, 1574, 1576 (figure), 1577 (figure), 1578 (figure)
superficial tribology and structural elements of, 1635–1636, 1635 (figure), 1636 (figure)
surface films and, 1574, 1574 (figure), 1575 (figure), 1576 (figure)
surface roughness data analysis and, 1569–1573, 1570 (figure), 1570 (table), 1571 (figure), 1572 (figure), 1573 (figure)
turbine lubricating oils and hydraulic fluids and, 627, 627 (figure)
wear surfaces and, 1567–1569, 1569 (figure), 1569 (table)
wear surfaces and, 1573–1576
lubricity
additives, 189
of aerospace fuels, 1312–1313
of aviation fuels, 225
of diesel fuel oils, 255–256
of gasoline, 203
PAGs and, 520–521
of synthetic lubricants, 527–528, 528 (table)
Lurgi-Ruhrgas process, 115–117

M
MacCoull equations, 1497, 1498 (figure), 1499–1500
machining. See also metalworking and machining fluids
of, 865
dry, 889–890
metal characteristics in, 888, 889 (table)
operations, 865–867
macrocrytalline wax (paraffin wax), 85, 87–88, 97
macromulsions, metalworking and machining fluids, 880–881
magnetic residues, LPG and, 166–167
magnetic separators, for contamination removal, 923–924
maltenes, 40
manifold air temperature and pressure, ONR, 195
Mannich dispersants, 392, 398, 399 (figure)
manual piston cylinder (MPC) sampling, 154
manufacturing process control, 1701–1702
marine fuels, 242, 246 (table). See also fuel properties and test methods
marine transport, for aviation fuels, 228–229
marine vessels, static petroleum measurement and, 1065
martempering quenching oils, 1004–1005, 1005 (figure), 1005 (table)
martenite, 978 (figure), 979
mass in air, 1067
mass resolution, 1152
mass spectrometry (MS)
APCI and, 1152, 1156
APLI and, 1156–1157
APPT and, 1152, 1156
ESI and, 1152, 1155–1156
Fourier-transform ion cyclotron resonance, 41
FT-ICR, 1152–1154, 1153 (figure)
gas chromatography, 1119–1120
for hydrocarbon base oil analysis, 307, 308 (table)
inductively coupled plasma, 1092–1093
ion mobility, 1155
LDI and, 1152, 1157
MALDI and, 1152, 1157
Orbitrap, 1152, 1154
for petroleum oil
asphaltenes and, 1161–1162, 1162 (figure)
data analysis of, 1157–1160, 1157 (figure), 1158 (figure), 1159 (figure), 1160 (figure)
environmental monitoring and, 1162
sample preparation in, 1160–1161, 1161 (figure)
techniques of, 1152–1153
TOF, 1152–1154
material and paint compatibility, of HFA, HFB, HFC fluids, 546, 547 (table)
material safety data sheets (MSDSs), 919
matrix-assisted laser desorption/ionization (MALDI), 1152, 1157
maximum friction reduction (MFR), 1616–1618, 1617 (figure), 1618 (table), 1619 (figure)
maximum wear reduction (MWR), 1616–1618, 1617 (figure), 1618 (table), 1619 (figure)
MB M111 black sludge test, 788 (table)
MB M111 fuel economy test, 779 (table), 789 (table)
MB M271 sludge test, 789 (table)
measurement processes
ASTM standards for, 1709
bias in, 1703–1704
manufacturing process control, 1701–1702
precision in, 1702–1703, 1703 (figure)
product property conformance to specification, 1702
QA program for, 1704–1708
self-monitoring, 1702
mechanical methods, for asphaltenes deposition prevention, 65
mechanical shear, ester polymers and, 483
medium-chain chlorinated paraffins (MCCPs), 767–768, 907
Meinken process, 299
melting point
of mineral oil base stocks, 292, 292 (figure)
petroleum waxes and, 98, 99 (figure), 100 (figure), 101 (figure), 101 (table)
mercaptan odorants, 173
mercury, in crude oil, 1096
metabolism, microbial, 1237–1238, 1238 (figure)
metal deactivators, 189
as antioxidants, 382, 385 (figure), 1368, 1375 (figure)
for compressor lubricants, 698, 699 (table)
metalworking and machining fluids
metal-treating fluids, 893, 896–898, 897 (figure)
metal surfaces, friction modifiers and, 436–437, 437 (figure),
microelemental analysis methods of, 1096, 1097 (table)
metal-protecting fluids, 893
metal ratio, of detergents, 422
metal-removal, 865–867, 867 (figure)
metal-removal and, 885–891, 886 (figure), 887 (figure),
metal-protecting fluids, 893
metal passivators, 605, 605 (figure), 666
metal oxides, lubrication and, 1616, 1616 (table)
metallocenes, 411
metal-forming, 867–868
classification of, 875 (figure), 876 (table)
characteristics of, 884 (table)
ASTM standards for, 928–930
additives and, 991 (figure)
tolerance for, 911
antimicrobial agents and, 911
antimisting agents and, 911
antioxidants and, 913–914, 914 (figure)
corrosion inhibitors and, 911, 912 (figure)
couplers and, 903–904, 904 (figure)
dispersants and, 910, 911 (figure)
dyes and, 914
eumulsifiers, 900–903, 902 (figure), 902 (table)
EP agents and, 905–910, 906 (figure), 907 (figure),
908 (figure), 909 (table), 910 (figure), 910 (table)
filmer formers and, 904
foam inhibitors and, 912–913, 913 (figure)
friction modifiers and, 904–905, 904 (figure), 905
(figure)
inorganic/organic solids and, 914–915
odor-control agents and, 914
ASTM standards for, 928–930
characteristics of, 884 (table)
classification of, 875 (figure), 876 (table)
barrier-film lubricants and, 898
base fluid-based, 875–879, 898–900, 899 (figure)
end use as basis of, 884–889
metal-forming and, 891–893, 893 (table), 894 (table),
895 (table), 896 (table), 918 (table)
metal-protecting fluids, 893
metal-removal and, 885–891, 886 (figure), 887 (figure),
888 (table), 890 (table), 891 (table), 917 (figure)
metal-treating fluids, 893, 896–898, 897 (figure)
base fluids, 876–877
semisynthetic fluids, 881–882
slide-way lubricants and, 898
soluble oils, 880–881
synthetic fluids, 882–883, 882 (figure)
water-based, 877–879, 878 (figure), 878 (table),
879 (figure), 879 (table)
concentration of, 870
emulsion stability of, 883
environmental compatibility of, 922
fluid blending and maintenance of, 916–917
foaming in, 878–879
formulations for, 915–916
hydrocarbon base oils and, 325
lubrication and, 870–874, 871 (figure), 872 (figure), 873 (figure)
market drivers and restraints of, 870
oxidation stability of, 884
recycling and disposal of
contaminant removal, 923–925
disposal methods, 925–926
metal cuttings disposal, 928
nonhazardous fluid disposal, 926–927, 927 (table),
928 (table)
reprocessing and reclamaiton, 923, 925, 925 (figure)
sump sludge disposal, 928
used oil criteria of EPA, 922–923
used oil disposal, 928
wastewater disposal, 927–928
safety of, 919
selection of, 869
solid dispersions and, 884
storage stability of, 883–884
tests of, 917–919, 919 (table), 920 (table), 921 (table)
toxicity of, 919, 922
viscosity and, 874–875, 874 (figure)
water-miscible
cast iron chip test for, 1413, 1413 (figure)
condition monitoring for biodeterioration and, 1252–1255,
1252 (figure), 1253 (figure), 1254 (figure)
water quality and, 900
metalworking operations
heat-treatment and, 869
joining processes, 868–869
metal-forming, 867–868
metalworking fluid classification and, 891–893, 918 (table)
surface changes in, 872–873, 872 (figure)
metal-removal and, 885–891, 917 (table)
metallurgical fluid classification and, 885–891, 917 (table)
metallurgical fluid classification and, 867–868
formation and steps in, 132, 134, 135 (figure)
water quality and, 900
methane
methane from, 336
structure of, 1297, 1300 (figure)
methanol
production of, indirect coal liquefaction and, 129–131,
130 (figure), 131 (figure)
in propane, phase behavior, 162–164, 163 (table), 164 (table)
in propylene, 345
methanol-to-gasoline (MTG) process
block diagram of, 132 (figure)
discovery and development of, 131–132
dual-cycle mechanism of, 134–135, 135 (figure)
gasoline yields and properties in, 132, 132 (table)
reaction mechanism and steps in, 132, 133 (figure), 134,
134 (figure)
methanol-to-dielectric (MTO) process, 132, 133 (table), 135, 342,
342 (figure)
methylcyclohexane, 132, 134
methylcyclopentadienyl manganese tricarbonyl (MMT), 188
methylene-bridged alkylphenols, 413, 414 (figure)
methyl ethyl ketone (MEK), 83, 84 (figure)
micellar solutions, metalworking and machining fluids, 882–883, 888 (figure)
Michelson interferometer, 1127, 1127 (figure)
microbes. See also biodeterioration
 biofilms of, 1240–1241, 1241 (figure)
 definition of, 1237
 in fuels and lubricants, 1241–1242
 growth and proliferation of, 1238–1239, 1239 (figure)
 metabolism of, 1237–1238, 1238 (figure)
 persister cells and, 1241
 physicochemical environments of, 1239–1240, 1240 (figure)
 water and, 1240, 1240 (figure)
microbiologically influenced corrosion (MIC), 1244–1247, 1244 (figure), 1245 (figure), 1246 (table), 1247 (figure), 1248 (figure), 1454–1456
 microcrystalline wax (microwax), 85, 97
 micro-EHD lubrication, 1602–1603
 microelemental analysis methods
 of ash and sulfated ash, 1096
 of biofuels, 1097, 1098 (table)
 of hydrogen, 1095–1096
 of mercury in crude oil, 1096
 of metals, 1096, 1097 (table)
 NAA, 1093–1094
 of nitrogen, 1096, 1096 (table)
 precision of, 1094 (table)
 of silicon, 1096
 of sulfur, 1097, 1097 (table)
 types of, 1093 (table)
 XRF, 1094–1095, 1095 (table)
microfiltration, for contamination removal, 924
micronic filters, 231
microorganisms, aviation fuel quality control and, 233
micropitting, 724–725, 725 (figure)
 superficial tribology and, 1643, 1644 (figure)
 tribology TRL and
 low-cycle, 1654–1655, 1655 (figure)
 spalling and, 1655–1656, 1656 (figure), 1657 (figure)
 WAM testing for, 1656–1658, 1657 (figure), 1658 (figure), 1659 (figure)
 micro-scuffing, superficial tribology and, 1643, 1644 (figure)
 middle-distillate fuel oils, cloud point of, 1523
 Midgeley, Thomas, Jr., 180
 mid-infrared spectroscopy (FTIR) test, 32
 Mie theory, light scatter particle counting and, 1225–1226, 1225 (figure)
 Miller, W. A., 151–152
 milling operations, machining, 866
 MIL-PRF-2105E, classification, for gear lubricants, 739, 740 (table)
 mineral oil base stocks
 of compressor lubricants, 694–695, 694 (table), 695 (figure)
 de-asphalting and, 287, 287 (figure)
 distillation of, 286–287
 flow scheme for production of, 290, 292 (figure)
 fluidity of, 291
 hydrotreating and, 288–289, 292 (table), 293
 hydrogen finishing and, 288
 hydrotreating of, 291 (figure), 292 (table)
 lubricating greases and, 324–325, 325 (table)
 melting point and VI of, 292, 292 (figure)
 solvent dewaxing and, 288–289, 293
 solvent refining and, 287–288, 291 (figure)
 structures and physical properties of, 289, 290 (table)
 mineral oil heat transfer fluids, 961–965, 962 (figure), 962 (table), 963 (table), 964 (figure), 964 (table). See also heat transfer fluids
 mineral oils
 for aero-engines, 585
 environmentally acceptable ester-based hydraulic fluids mixing with, 566
 for hydraulic fluids, 670–671, 671 (table), 672 (table)
 minimum bounding rectangle, particle counting and, 1218, 1218 (table)
 minimum friction coefficient (MFC), 1616–1618, 1617 (figure), 1618 (table), 1619 (figure)
 minirotary viscometer (MRV) test, 480
 mixed-EHD lubrication, 1603
 modified continuously closed cup (MCCCCP) tester, 246
 modified Ostwald viscometers, 1491 (table), 1492–1493, 1492 (figure), 1494 (figure)
 modulus, 1487
 moisture analyzers
 calibration of, 348
 of hydraulic fluids and, 660
 pipeline corrosion, 1463–1464, 1463 (figure), 1464 (figure)
 molybdenum dialkyldithiocarbamate (MoDTC), 758, 849
 molybdenum disulfide (MoS2), 463, 464 (figure), 465
 monitors, aviation fuel quality control and, 231
 motor octane number (MON), 1279
 Motor Octane Number (MON), 5, 181, 192–193, 193 (table)
 multi-additive suppliers, 359
 linear regression (MLR), 1131–1133
 multiphase flow loops, for pipeline corrosion, 1456, 1458 (figure), 1459 (figure)
 multiphase flow regime, pipeline corrosion and, 1435–1436, 1436 (figure)
 multiphase velocity, pipeline corrosion and, 1436, 1436 (figure)
 multiply-alkylated cyclopentanes (MACs), 525–526
 multispecimen test machine, 1687–1688, 1687 (figure)
N
 nanoaggregate concentration (NAC), 43
 nanocomposites, lubrication and, 1615–1616, 1616 (table)
 nanoparticles, in lubrication
 chemical composition of, 1615, 1615 (figure), 1615 (table)
 importance of, 1613
 metals and, 1616, 1616 (table)
 metalds and, 1616, 1616 (table)
 morphology of, 1618–1621, 1619 (figure), 1620 (figure), 1621 (table)
 nanocomposites and, 1615–1616, 1616 (table)
 rare earth compounds and, 1616–1618, 1617 (figure), 1617 (table), 1618 (figure), 1618 (table)
 size of, 1618, 1619 (figure), 1619 (table)
 sulfurd and, 1615
 summary of, 1614, 1614 (table)
 naphthenes, 281
 characteristics of, 3–4
 composition of, 4
 determination of, 347
 naphthenic acids, 416, 416 (figure)
 naphthenic hydrocarbon base oils, 284, 286, 286 (table), 289, 290 (table)
 naphthenic hydrocarbon fractions, 81
 National Highway Traffic Safety Administration (NHTSA), 431
 National Institute of Standards and Technology (NIST), 1097, 1099 (table)
 National Lubricating Grease Institute (NLGI), 357
 Natural Sanitation Foundation (NSF), 499
 natural gas liquids, volume correlation factors and, 168–169
 Natural Gasoline (Oberfell and Alden), 151
 Natural Gasoline Association of America (NGAA), 150, 151
 naturally occurring radioactive materials (NORM), 167–168
natural sulfonic acid substrates, 412–413, 413 (figure)
needle coke, 1345, 1346 (figure)
neopentylglycol, synthesis of, 563, 563 (figure)
net standard volume (NSV), 1066
neutron activation analysis (NAA), 1093–1094
New Energy Development Organization (NEDO) process, 122, 124 (figure)
new surface structure, wear and, 1574, 1576 (figure)
Newtonian liquid, 1486
nickel
 in petroleum coke, 1347
test of used oil, 33
nitrogen
 in crude oil, 4
 in gear lubricants, 747
 hydrocarbon base oils and, 320–321
 microelemental analysis methods of, 1096, 1096 (table)
in radical scavengers, 1365, 1370 (figure)
 nitrogen oxide, 355
NOACK evaporation tester, 705, 705 (figure)
Noack volatility test, 313, 432, 434 (figure), 759
“nonassociated” gas, 147
nonengine lubricants, 357–358
nonflow energy equation, 1325
nonlubricating process fluids, 977.
non-Newtonian EHD lubrication, 1602–1603
nonflow energy equation, 1325
nonlubricating process fluids, 977.
See also
 octanol-water partition coefficient, environmental characteristics
 octane number ratings, history of, 180–181, 181 (table)
 octane number requirements (ONRs), 194–196
 octane-water partition coefficient, environmental characteristics
 and, 1540–1541
odor, of petroleum waxes, 105–106, 107 (table)
odie-control agents, metalworking and machining fluids and, 914
odorization, LPG, 172–173
OEM specifications, for gear lubricants, 740–741, 742 (table)
oil-based, metalworking and machining fluids, 876–877
oil consumption, additives and, 371, 371 (figure)
oil content, petroleum waxes and, 101
oil drain intervals, lubricants and, 356–357
oil-in-water emulsion, 472, 474 (figure)
in metalworking fluids, 877–879, 878 (figure), 878 (table),
879 (figure), 879 (table)
oil release test
 for GF-4/SN, 790 (table)
 for GF-5/SN, 790 (table)
oil separation, lubricating grease heat resistance and, 947–948, 947 (figure)
oil-soluble dye, in gasoline, 189
oil-soluble petroleum sulfonates, 1110
oil stain, LPG and, 165
oil thickening, 371, 476, 476 (figure)
olein-based polymers, 478–481, 479 (figure), 479 (table), 480 (table), 481 (figure)
olein copolymers (OCPs), 478–481, 479 (figure), 479 (table), 480 (table), 481 (figure)
oleins, 280. See also C\textsubscript{4} olefins; ethylene; methanol-to-olefin process; propylene
ASTM test methods for, 349
 C\textsubscript{4} olefins, 345–346
 ethylene, 344
general, 346–348
 propylene, 344–345
catalyst-based chemistry for, 342
characteristics of, 3–4
in detergent substrates, 410–411, 410 (figure)
DIN standards for, 349
feedstock outline for, 334, 336, 338 (table), 339 (table)
GPA standards for, 349
ISO standards for, 349–350
LPG and, 155–156
polymer sensitivity to, 333
process chemistry for, conventional, 336, 339
reduction of, 15–18, 26
steam cracking for, 333, 334 (figure), 335 (figure)
fractionation in, 340–341
 process of, 339–340, 340 (figure)
 pyrolysis in, 340
 recovery in, 341
test sampling points in, 342, 343 (figure)
unit flow in, 341 (figure)
sulfurization of, 447–448, 448 (figure), 448 (table), 449 (figure), 450 (figure)
thermal cracking for production of, 336, 339
thermophysical properties of, 343 (table)
UOP standards for, 350
open gear compounds, 728, 729 (table)
open-path gas measurements, IR spectroscopy, 1129
optical texture, of petroleum coke, 1348–1349, 1348 (table), 1349 (table)
Orbitrap mass spectrometry, 1152, 1154
organic acids, weak, 1243
organic phosphate, EP agent combining fatty acid and, 458, 459 (figure)
organoclay greases, 939, 941
organometallics, iron based, in gasoline, 189
organomolybdenum compounds, as friction modifiers, 849
organophosphorus esters, applications of, 462 (table)
orpice viscometers, 1496–1497
oscillating motion test, 951
oscillating roll/slide test, 1687, 1688 (figure)
oxidation, 1364, 1368 (figure)
ASTM tests for, 601–603, 602 (figure), 603 (figure), 604 (figure), 604 (table), 649–650, 649 (figure), 649 (table)
base stock structures susceptible to, 1363, 1364 (figure)
carboxylic acids and, 1364, 1368 (figure)
CI-4/CI-4 PLUS engine oils and, 831
compressor lubricants and, 707, 707 (figure)
copper ions in, 1368, 1376 (figure)
of EP gear lubricants, 747
hydrocarbon base oil, 320, 320 (table)
of EP gear lubricants, 747
hydrocarbon base oil, 320, 320 (table)
hydroperoxide and rate of, 374 (figure)
hypersulfur decomposition and, 1364, 1365, 1367 (figure), 1368 (figure)
initiation stage of, 372–373, 372 (figure), 1364
IR spectroscopy and, 1133, 1134 (figure), 1135 (figure)
transition metals as promoter and inhibitor of, 382, 384 (figure), 1367–1368, 1375 (figure)
mechanisms of, 1363–1369
degradation and, 373, 376 (figure)
deformation and, 1364 (figure)
opposites of, 320, 320 (table)
formation of, 347
composition of, 4
characteristics of, 3–4
reduction of, 26

of engine oils
ABOT, 1388, 1390 (figure), 1390 (table)
ASTM tests, 1385–1387, 1386 (figure), 1387 (figure), 1389 (figure)
BT-10 test, 1388
CMOT, 1388, 1391 (figure)
of gasoline
ASTM D381, 1390–1391, 1392 (figure)
ASTM D525, 1391, 1392 (figure), 1393 (figure)
ASTM D873, 1392–1393
ASTM D2274, 1393, 1394 (figure), 1395 (figure)
ASTM D3241, 1395
ASTM D4625, 1393–1394, 1395 (figure)
ASTM D6468, 1394–1395
ASTM D7525, 1395
ASTM D7545, 1396
IP-467, 1396
Rancimat test, 1396
of gear oils
ASTM tests, 1379–1381, 1381 (figure), 1382 (figure)
CEC tests, 1382, 1382 (table), 1383 (figure), 1383 (table), 1384 (figure)
JIS-K2514, 1381, 1382 (table), 1383 (figure)
of lubricants, 1396–1399, 1397 (figure), 1398 (figure)
of lubricating greases, 1382–1385, 1384 (figure), 1385 (figure), 1386 (figure)
methods of, 1400–1401
purpose of, 1369–1370
of turbine oils
ASTM D2070, 1374–1376, 1378 (figure)
ASTM D4636, 1376–1377, 1379 (figure)
ASTM D5846, 1378–1379, 1380 (figure)
ASTM D6514, 1379
DIN 51552-2, 1379, 1380 (figure)
IP-280, 1373–1374, 1377 (figure), 1378 (figure)
IP-306, 1374
oxygen (O2)
in crude oil, 5, 1422
in pipeline corrosion, 1439
oxygenates
in gasoline, 5, 5 (table), 183–184, 187, 188, 188 (table)
reduction of, 26

P
paddle-type rotational viscometer, 1488, 1488 (figure)
paint compatibility test, for compressor lubricants, 716
panel coker test, 1396–1397, 1397 (figure)
paraffinic hydrocarbon base oils, 284, 286, 286 (table), 289, 290 (table)
paraffinic hydrocarbon fractions, 81
paraffins, 187, 280
characteristics of, 3–4
composition of, 4
determination of, 347
isomerization and, 13, 14 (figure)
paraffin wax (macrocrystalline wax), 85, 87–88, 97
Parker Hannifin T6H20C vane/piston test, 659
partial least squares (PLS), 1131–1133
partial oxidation (POX), 253–254
particle counting
APCs for, 1215, 1229
applications of, 1228, 1228 (table)
ASTM tests, 1233, 1235
ASTM tests for, 1233, 1235
benefits of, 1216, 1216 (table)
calibration and verification of, 1229–1230, 1230 (table)
chord length and, 1218, 1218 (table)
cleanliness codes and, 1220–1221, 1221 (table), 1232, 1232 (table)
petroleum waxes
 abrasion resistance of, 109–110
 additives and, 98
 ASTM standards for, 81, 81 (table), 110–112
 blocking point of, 108, 109 (figure)
 carbonizable substances of, 104, 107 (figure)
 cloud point and, 100–101, 102 (figure)
 coefficient of kinetic friction and, 108–109
 color of, 104, 106 (figure)
 composition of, 79–80, 85, 86 (table), 87, 87 (figure), 88 (table)
 by GC, 105–106
 congealing point and, 98, 100
 crystal structure of, 87–88, 89 (figure), 90 (figure), 90 (table)
 DSC and, 92, 94, 96 (figure), 97–98, 97 (figure)
 EOS for, 88–89, 91–92, 91 (table), 93 (table), 94 (table), 95 (table)
 finishing process for, 85
 gloss retention of, 107
 hardness and, 102–103, 104 (figure)
 heat of fusion of, 97–98, 97 (figure), 98 (table)
 hot tack of, 110
 melting point and, 98, 99 (figure), 100 (figure), 101 (figure), 101 (table)
 odor of, 105–106, 107 (table)
 oil content and, 101
 peroxide number of, 105
 physical properties of, 87, 88 (table)
 pour point and, 98
 refining and, 83, 83 (figure)
 solvent dewaxing process and, 83–85, 84 (figure), 85 (table)
 surface wax of, 107–108
 total wax content of, 108
 transition temperatures, DSC and, 103–104, 105 (figure)
 types of, 85
 viscosity and, 102, 103 (figure)
 weight of wax applied during coating, 108
 Peugeot TU3M wear test, 779 (table), 789 (table)
 Peugeot TU51P-L4 test, 788 (table)
 pH
 of aqueous polymer quenchants, 1014
 pipeline corrosion and, 1439, 1439 (figure)
 phenate detergents, 421, 422 (figure), 428
 phenol
 hindered, as antioxidant, 1366–1367, 1373 (figure), 1398
 hydroperoxide decomposition and, 377 (figure), 378–379
 radical scavengers and hindered, 379–380, 381 (figure), 383 (figure)
 phenol connecting group, in polymeric dispersant synthesis, 396, 396 (figure)
 phenothiazines, radical scavengers and, 381–382
 Phillips, Frank, 151
 phosphate esters, for compressor lubricants, 695 (figure), 698
 phosphonate detergents, 421, 423 (figure), 428
 phosphonic acid dispersants, 398, 399 (figure)
 phosphorus content
 ASTM D4814 and maximum, 201
 EP agents and, 454, 455 (figure)
 in gear lubricants, 746
 in hyperoxide decomposers, 1365, 1370 (figure)
 photolysis, environmental characteristics and, 1544
 photooxidation, environmental characteristics and, 1544
 photovoltaic thermal (PVT) cell, 48–50
 pH test, of used oil, 33
 physisorption, 1606, 1609 (figure)
 pin-and-vee block device testers, 1679–1680, 1680 (figure), 1681 (figure)
 pin-on-disk testers, 1680–1681, 1681 (figure)
 pipe cleaning, for pipeline corrosion control, 1448–1449, 1449 (figure), 1450 (figure)
 pipeline corrosion
 alloying composition in, 1442, 1442 (figure)
 anodic dissolution reactions and, 1424
 ASTM standards for, 1471
 biocides for control of, 1454–1456, 1455 (figure), 1457 (table)
 cathodic reduction reactions and, 1423
 chemical treatment by corrosion inhibitors for
 application methods of, 1452
 classes of, 1450, 1451 (table)
 operating conditions influencing, 1452–1453, 1453 (figure)
 selection criteria for, 1452, 1452 (figure)
 CO2 partial pressure and, 1437–1438
 corrosivity and CR determination in
 EIS for, 1468, 1469 (figure)
 potentiodynamic anodic polarization and polarization resistance for, 1467–1468, 1467 (figure), 1468 (figure)
 potentiostatic polarization for, 1468–1469, 1470 (figure)
 weight loss measurements for, 1465–1466, 1466 (figure)
 environmental control of
 degasification, 1445–1446, 1446 (figure)
 gas-phase contaminants, 1444–1445, 1445 (figure)
 water content and dehydration/dewatering, 1446, 1447 (figure), 1448, 1448 (figure)
 experimental setups and devices for
 autoclaves, 1456, 1458–1459, 1459 (figure)
 glass cell, 1460, 1462, 1462 (figure)
 goniometer or tensiometer, 1462–1463, 1462 (figure)
 high-speed rig, 1460, 1461 (figure)
 HRC setups, 1459–1460, 1460 (figure)
 moisture analyzers, 1463–1464, 1463 (figure), 1464 (figure)
 multiphase flow loops, 1456, 1458 (figure), 1459 (figure)
 SSRT, 1464–1465, 1464 (figure), 1465 (figure)
 H2S in, 1438–1439
 HSLA steel and, 1440–1441, 1441 (figure), 1441 (table)
 hydrogen damage and, 1433–1435
 localized
 erosion corrosion, 1430–1431, 1430 (figure)
 galvanic corrosion, 1431
 intergranular corrosion, 1431
 pitting, 1428–1430, 1429 (figure)
 multiphase flow regime and, 1435–1436, 1436 (figure)
 multiphase velocity and, 1436, 1436 (figure)
 O2 in, 1439
 oil chemistry and, 1422
 oil interference mechanisms in, 1426–1427, 1426 (table), 1427 (figure)
 oil-water flow patterns and, 1417–1418, 1419 (figure), 1420 (figure)
 oil-water mixture and, 1417, 1418 (figure), 1420–1422, 1421 (table)
 pH and, 1439, 1439 (figure)
 pipe cleaning for control of, 1448–1449, 1449 (figure), 1450 (figure)
 products of, 1425–1426, 1426 (figure)
 salinity in, 1436–1437, 1437 (figure), 1438 (figure)
 steel microstructure and, 1442–1443, 1443 (figure), 1444 (figure), 1445 (figure), 1445 (table)
 stress corrosion cracking and, 1431–1433, 1431 (figure), 1433 (figure)
temperature and, 1439–1440, 1440 (figure)
transport of species in, 1424–1425
uniform, 1427–1428
water phase wetting and, 1435
wettability of metal surface in, 1418–1420, 1421 (figure)
pipeline intervention gadget (PIG), 1448, 1449 (figure)
pipelines, for aviation fuel transportation, 228
pipeline samples, 1062
piping, for heat transfer fluid system, 971
piston cleanliness, detergents and, 426, 426 (figure)
ploughing, friction due to, 1567, 1568 (figure)
platinum resistance thermometers (PRTs), 1271–1273, 1272 (figure), 1507
Pneurop oxidation test, 1379, 1380 (figure)
plowing wear, 366, 725, 725 (figure), 1577–1578, 1581 (figure)
plate-to-plate viscometer, 1488, 1488 (figure)
plastic body, 1487
pollution control, in petroleum oil refining, 25
polishing wear, 366, 725, 725 (figure), 1577–1578, 1581 (figure)
point contact, Hertzian contact and, 1633
polarization resistance, CR and, 1467–1468, 1467 (figure), 1468 (figure)
polar moieties, in polymeric dispersant synthesis, 396–401, 397 (figure), 399 (figure), 400 (figure), 401 (figure)
polishing wear, 366, 725, 725 (figure), 1577–1578, 1581 (figure)
superficial tribology and, 1643, 1643 (figure)
pollution control, in petroleum oil refining, 25
polyalkylene glycols (PAGs)
appearance of, 1011–1012
cloud point of, 1015, 1015 (figure)
conductance of, 1014, 1014 (figure)
cooling curve analysis for, 1017, 1017 (figure), 1018 (figure)
corrosion inhibitors and, 1015–1016, 1015 (figure)
degradation analysis for, 1016, 1016 (figure)
foaming and, 1016
ph of, 1014
refractive index and, 1012, 1012 (figure), 1013 (figure)
viscosity of, 1012–1013, 1013 (figure)
water content and, 1014
ester
degradation-related viscosity loss and, 487–488, 490 (figure)
mechanical shear and, 483
shear-related viscosity loss and, 484–487, 486 (figure), 487 (figure), 488 (figure), 489 (figure)
structures of commercially available, 484 (table)
synthesis of, 481–484, 482 (figure), 483 (figure)
thickening efficiency and, 484, 485 (figure)
olefin-based, 478–481, 479 (figure), 479 (table), 480 (table), 481 (figure)
olefins and sensitivity of, 333
oxidation and formation of, 1364, 1368 (figure)
polymer solution theory, of asphaltene phase behavior, 52
polytetrafluoroethylene (PTFE), 68, 464–465
polyurea greases, 939, 941
port blocking, detergents and, 426, 426 (figure)
polytetrafluoroethylene (PTFE), 68, 464–465
potentiometry, for lubricant titration analysis, 1073–1077, 1074 (table), 1076 (figure), 1076 (table)
potentiostatic polarization, for CR, 1468–1469, 1470 (figure)
pour point, 7
of compressor lubricants, 703
definition of, 491
determination of, 1520–1521, 1521 (figure)
diesel fuel oils and, 249–250
of fuel oils, 1331
for gear lubricants, 743
historical development of, 1520
petroleum waxes and, 98
turbine lubricating oils and hydraulic fluids and, 612, 616–617
pour point depressants (PPDs), 491–492, 492 (figure), 493 (figure)
for automotive engine lubricants, 768–769
for compressor lubricants, 699 (table), 700
for gear lubricants, 730
hydraulic fluids and, 669
power law model, 1487
powertrain systems, improving, 769
power transfer, hydraulic fluids and, 645, 646 (figure)
Prabhu-Ramesh correlation, quenching cooling curve analysis and, 1001–1002
precipitation number
 in compressor lubricants, 706
 in gear lubricants, 742–743
 quenching and, 1010
precision
 in measurement processes, 1702–1703, 1703 (figure)
 monitoring, 1704–1706
preformed soaps, 941
premature wear, 888
pressure differential scanning calorimetry oxidation test, 949
pressure drop, heat transfer fluids and, 961, 961 (table)
pressure gauges, for heat transfer fluid system, 972
pressure drop, heat transfer fluids and, 961, 961 (table)
pressure-viscosity coefficient, 1603–1605, 1604 (figure), 1605 (figure)
pressure gauges, for heat transfer fluid system, 972
pressure drop, heat transfer fluids and, 961, 961 (table)
propane P-H diagram, 148 (figure)
propane-butane mix, 145. See also liquefied petroleum gas auto
 dryness of
 autorefrigeration and, 162
 determination of, 158–159
 dissolved water and, phase behavior of, 159–160, 159 (table), 160 (table)
 gas hydrates and, 160–162
 methanol and, phase behavior of, 162–164, 163 (table), 164 (table)
 water measurement and, 164–165
 water sources and, 164
 ethanol in, 163
 ethylene formation from, 336, 339
 isopropanol in, 163
 liquid, 171
 phase behavior of dissolved water in, 159–160, 159 (table), 160 (table)
propane P-H diagram, 148 (figure)
propylene, 333
 ASTM test methods and characterization of, 344–345
 to finished product diagram, 335 (figure)
 thermophysical properties of, 343 (table)
pudding, 1345
pump performance testing, 546, 546 (table)
pumps, for heat transfer fluid system, 972
PV curves, 684, 685 (figure)
pyrolysis
 clean-coke process for, 117
 COED process for, 117
 current research on, 118–119
 direct coal liquefaction pathway compared to, 128–129, 128 (figure), 129 (figure)
 encoal process for, 118, 118 (figure)
 Lurgi-Ruhrgas process for, 115–117
 occidental process for, 118
 in olefin steam cracking process, 340
 reactions in, 115, 116 (figure)
 Toscoal process for, 117, 117 (figure)
 Union Carbide process for, 117–118
 yield of volatile products in, 118, 119 (figure)
Reid vapor pressure (RVP), 222
regular solution model, of asphaltene phase behavior, 53
Registration, Evaluation, and Authorization of Chemicals (REACH), 498, 500
re-refining, definition of, 29
history of, 29–30
processes of, 33–35, 35 (figure), 36 (figure)
used oil for
assessment of, 30–31, 30 (table), 31 (table)
BERC process, 299
by-products of, 297–298
flow diagram for, 299 (figure)
IFP process, 299
KTI process, 299–300, 300 (figure)
Meinken process, 299
quality comparison of, 300, 301 (table)
testing of, 31–33, 33 (table)
uses of, 300, 302, 302 (figure)
research octane number (RON), 5, 180, 192–194, 193 (table), 1279
resid conversion and upgrading processes
delayed coking, 20–21, 20 (figure), 21 (table)
fixed bed hydrocracking, 22, 22 (table)
fluid coking/flexicoking, 21
fluidized bed hydrocracking, 22, 22 (figure), 23 (table)
global installations of, 18, 18 (table)
solvent deasphalting, 19–20, 20 (figure)
volatilization, 18–19, 19 (figure), 19 (table)
residual matter, LPG and, 165–166
resin, soot interaction with, 390, 390 (figure)
resistance temperature detectors (RTDs), 1507
PRTs, 1271–1273, 1272 (figure), 1273 (figure)
thermistors, 1273–1275, 1274 (figure)
thermocouples, 1274–1275, 1274 (figure)
resonantly enhanced multiphoton ionization (REMPI), 1156
resource conserving, fuel economy and, 431–432
reverse-flow viscometers, 1491, 1493 (figure)
Reynolds number, 1281
rheology
definition of, 1486
of environmentally acceptable ester-based hydraulic fluids, 557–558, 558 (figure)
of hydraulic fluids, 667–670
Riazi and Mansoori (RM) equation, 89, 91–92
ring sticking, additives and, 371
riveting, 869
road transport, for aviation fuels, 229
ROBO apparatus, 759, 773, 791
rolling, metal-forming, 868
rolling ball viscometer, 1488–1489, 1489 (figure)
roll stability, lubricating grease consistency stability and, 944
root cause analysis, of biodeterioration, 1259, 1260 (figure)
rotary compressors, 690–692, 690 (figure), 691 (figure), 692 (figure)
rotary pressure vessel oxidation test (RPVOT), 567, 568 (figure), 601, 602 (figure), 1373
rotating bomb oxidation test (RBOT), 707
round-robin (interlaboratory) exchange testing, 1707
rubber
biocorrosion of, 1245–1246, 1246 (table)
heat transfer fluids and, 968
run-in polishing (RIP), 1658–1660, 1659 (figure)
concept oil, in HMMWV simulation, 1662–1664, 1663 (figure), 1664 (figure)
rust
definition of, 366
electrochemical nature of, 1405–1408, 1406 (figure)
lubricant basicity effect on, 468, 472 (figure)
mechanism of, 467, 467 (figure)
turbine lubricating oils and hydraulic fluids and, 626–627
rust and oxidation (R&O) oils, 728, 729 (table)
rust inhibitors, 468, 469 (figure)
ASTM tests for, 604–605
for automotive engine lubricants, 766
for compressor lubricants, 698, 699 (table)
for engine oils, 757
for gear lubricants, 746
humidity cabinet and, 1411, 1412 (figure)
for hydraulic fluids, 666
lubricating greases and, 952
mechanism of, 1407, 1407 (figure)
mode of action of, 468, 469 (figure)
structures of, 470 (figure)
for turbine lubricating oils and hydraulic fluids, 603–605, 605 (figure)
ruthenium, FTS and, 136, 138, 139 (figure), 140 (figure)
Ryder Gear Tester, 606, 610
ruthenium, FTS and, 136, 138, 139 (figure), 140 (figure)
S
salicylate detergents, 421, 423 (figure), 428
salinity, in pipeline corrosion, 1436–1437, 1437 (figure)
salt spray apparatus, 1410–1411, 1411 (figure)
saponification number, quenching and, 1008
saponification, of esters, 558–560, 559 (figure)
saye tests, 604–605
Saybolt viscometers, 1494 (figure), 1496, 1497 (figure)
saybolt patent, 151
Saybolt viscometers, 1494 (figure), 1496, 1497 (figure)
scale wax, 85
scanning-electron-microscopy (SEM), 43, 44 (figure)
scanning-tunneling-microscopy (STM), 43
scoring, definition of, 366
scuffing, 366, 725–726, 726 (figure)
definition of, 1589
examples of, 1589, 1589 (figure)
FZG test of, gear lubricants and, 747–748
load capacity testing, tribology TRL and, 1651–1653, 1652 (figure), 1653 (figure)
micro-, superficial tribology and, 1643, 1644 (figure)
run-in polishing and, 1658–1660, 1659 (figure)
spiral bevel gear threshold of, 1654, 1655 (figure), 1656 (figure)
superficial tribology and, 1644–1645, 1645 (figure)
seals
compressor lubricants compatibility with, 716
gear lubricants compatibility with, 748
heat transfer fluids and, 968
hydraulic fluids compatibility with, 666–667, 667 (table)
performance of, dispersants and, 406
structures of, 494, 494 (figure)
seal-swell agents, 495, 666–667
sediment content, control and removal of, 250, 251
sediment toxicity tests, 1558
Segerberg hardening power, modified, 1000–1001, 1001 (figure)
seizure, in lubrication, 1595
selective catalytic reduction (SCR), 355
self-monitoring, measurement process, 1702
semi-synthetic fluids, metalworking and machining fluids, 881–882
servo-operated automated tank gauge, 1065
settling tanks, for contamination removal, 923–924
shale oil, 26
shear rate, 1486
viscosity and, 1508–1509, 1509 (figure)
shear stability
of engine oils, 759
fuel injector test of, 1512, 1512 (figure)
for gear lubricants, 749
of hydraulic fluids, 667–668, 667 (figure)
permanent index of, 1512–1513
of polymer-containing oils, 1511–1513, 1511 (figure), 1512 (figure)
sonic test of, 626, 1511, 1511 (figure)
of turbine lubricating oils and hydraulic fluids, 625–626
shear strain, 1487
shear stress, 1486
shear thinning, 1487
sheet metal forming test, 1688
shock film boiling, 988
short-capillary viscometers, 1496–1497
short-chain chlorinated paraffins (SCCPs), 767–768, 907
Shukhov, Vladimir, 333
shutdown time, start-up wear and, 432, 433 (figure)
silicon, microelemental analysis methods of, 1096
silicones, 524–525
for compressor lubricants, 697
silicon test, of used oil, 33
silver corrosion inhibitors, 189
silver corrosion test, 200
simulated distillation, GC and, 1111–1113
single common powertrain lubricant (SCPL), 832
Single Contact Model (SCM), 1650–1651, 1666–1669, 1667 (figure), 1669 (figure)
single particle optical sizing (SPOS) procedure, 1221, 1224, 1224 (figure)
skimmers, for contamination removal, 924
slack wax, 85
slide-way lubricants, 898
sliding, 1688
sliding bottle test, 1688
sliding velocity, tribology and, 1640
slow strain rate test (SSRT), 1464–1465, 1464 (figure), 1465 (figure)
sludge
definition of, 366
formation of, 366
ZDDPs and formation of, 650, 650 (figure)
small bearings, greases in, 949
small scale closed cup tester, 244–245
small-volume viscometers, 1492
smearing, adhesive and polishing wear and, 1577–1578, 1581 (figure)
smoke point, 221
smoke tendency, of aerospace fuels, 1308–1309
Snelling, Walter, 150
soap content, detergents and, 423
soaps, 418, 425, 426 (figure)
Soave-Redlich-Kwong (SRK) equation, 89, 91–92
Society of Automotive Engineers (SAE), 351
J300 viscosity classification, 760
J306c viscosity classification, 738, 740 (table)
J3260 classification of, 739–740, 740 (table), 741 (table)
turbine lubricating oils and hydraulic fluid standards of, 640
sodium-plus-potassium, in gas turbine fuel oils, 265–266, 265 (table)
sodium-potassium, in gas turbine fuel oils, 265–266, 265 (table)
softening point, 231
Soft oil, 770
solid lubricants
boron nitride, 463, 464 (figure)
CaF2, 463–464 (figure)
definition of, 461
solidification, of aerospace fuels, 1305
diffusion coating and, 464
frictional properties of, 463, 464 (table), 465, 466 (table)
graphite, 462–463, 463 (figure), 465
MoS₂, 463, 464 (figure), 465
PbO, 463
PTFE and, 464–465
uses of, 461–462
wear control with, 465, 465 (figure)
solid models, of asphaltene phase behavior, 53
solid particles, aviation fuel quality control and, 232
solubility
asphaltenes and, 47
of corrosion inhibitors for pipeline corrosion chemical treatment, 1453–1454, 1454 (figure)
environmental characteristics and low, 1554–1555, 1554 (figure)
of gas in oil, 493
PAGs reversal of, at high temperature, 897, 897 (figure)
soluble oils, metalworking and machining fluids, 880–881
soluble organomolybdenum compounds, 766
solvent
asphaltene deposition prevention with, 66
deasphalting, 19–20, 20 (figure)
dewaxing process, 83–85, 84 (figure), 85 (table)
decomposition of, 59, 59 (figure)
dehydroaromatization, 90–92, 92 (figure), 93 (table)
desorption of, 59
extraction, in direct coal liquefaction
asphaltene conversion pathways in, 126–127, 128 (figure)
catalytic conversion pathways in, 127, 128 (figure)
China and, 124, 126 (figure), 126 (table)
corrosion inhibitors for pipeline corrosion chemical treatment, 1453–1454, 1454 (figure)
coking and, 157–158
coke accumulation, 157, 158 (figure)
coal rank and, 126, 127 (figure)
Exxon donor solvent coal liquefaction process for, 119–120, 122, 123 (figure)
H-coal process for, 119, 121 (figure), 122 (figure)
Kohleoel process for, 122, 123 (table)
light gas production, operating temperature and, 124, 126, 126 (figure)
LSE process for, 122
NEDO process for, 122, 124 (figure)
Northeast Liquefaction Company for, 122 (figure)
operation costs of, 129
plants for, 119, 120 (table)
product yields in, 119, 121 (figure)
SRC-I and SRC-II processes for, 119
temperature and reaction times in, 126, 127 (figure)
thermal pyrolysis pathway compared to, 128–129, 128 (figure)
Wilsonville Pilot Plant, CTSL processing for, 123–124, 124 (figure), 125 (table)
fraction of petroleum pitch, 1335–1338, 1336 (figure), 1336 (table), 1337 (table), 1338 (figure)
refining
mineral oil base stocks and, 287–288, 291 (figure)
turbine oil base stocks and, 590, 592 (figure), 593 (table)
solubility, petroleum waxes and, 102
washed and unwashed gum, 201
Sommerfeld number, 1677
sonic shear stability test, 626, 1511, 1511 (figure)
soot formation of, 366–367
IR spectroscopy and, 1133, 1134 (figure)
in lubricants, cold flow properties of, 1535
resin interaction with, 390, 390 (figure)
"sour" gas, 147
"space velocity," 18
spallation, 1586
micropitting and, tribology TRL and, 1655–1656, 1656 (figure), 1657 (figure)
WAM testing for, 1656–1658, 1657 (figure), 1658 (figure), 1659 (figure)
spark-ignition direct injection (SIDI) engines, 190, 1286–1287, 1287 (figure)
spark-ignition (SI) engines, 179, 190, 763
combustion in
chamber development of, 1283–1287, 1283 (figure), 1286 (figure), 1287 (figure)
fundamentals of, 1279–1283, 1280 (figure), 1281 (figure), 1282 (figure)
oxidation stability and, 1395
specific gravity
of compressor lubricants, 702
of heat transfer fluids, 968
of hydrocarbon base oils, 315, 315 (table)
quenching and, 1008
specific heat
of compressor lubricants, 715–716
of heat transfer fluids, 968
specific impulse, of aerospace fuels, 1310, 1310 (table), 1311 (figure)
specular gloss, of petroleum waxes, 107, 108 (figure)
spinning, metal-forming, 893
spiral bevel gear, scuffing threshold for, 1654, 1655 (figure)
spontaneous ignitability, of aerospace fuels, 1319, 1320 (figure)
spot samples, 1061, 1061 (figure)
spray flammability parameter (SFP), 545
spray ignition tests, for fire resistance, 620, 620 (figure), 621 (figure)
squeeze-type lubricant films, 873, 873 (figure)
SRC-I and SRC-II processes, 119
stabilization patent, 151
stabilizers, 363–366
Stabinger viscometers, 1495–1496
standard platinum resistance thermometers (SPRTs), 1271, 1507–1508, 1508 (table)
standard reference materials (SRMs), 1097–1098, 1099 (table)
start-up wear, shutdown time and, 432, 433 (figure)
static dissipator additives (SDAs), 1110
static electricity
aviation fuels and, 225
gasoline and, 203
static gases, thermodynamic properties and, 1318–1319
static petroleum measurement
API standards for, 1055–1056
ASTM standards for, 1068
calculations in, 1065–1067
definition of, 1055
density or API gravity test for, 1066–1067
free water and, 1058–1059
gauging operations in
innage measurement for, 1063–1064
marine vessels and, 1065
outage measurement for, 1064–1065
thermometers and, 1062–1063
manual sampling in
pipeline samples, 1062
spot samples, 1061, 1061 (figure)
tools for, 1059–1060, 1060 (figure)
types of, 1060–1061, 1060 (figure)
temperature measurement in, 1057–1059
terminology of, 1056–1057
statistical association fluid theory (SAFT) EOS model, 53–55, 54 (figure)
steady-flow energy equation, 1325
steady-state efficiency, of hydraulic fluids, 669–670, 669 (figure)
steam cracking, for olefin production, 333, 334 (figure), 335 (figure)
 fractionation in, 340–341
 process of, 339–340, 340 (figure)
pyrolysis in, 340
recovery in, 341
test sampling points in, 342, 343 (figure)
unit flow in, 341 (figure)
steam reforming, 23–24
steam turbine oils, horizontal disk test for, 1412
steel
 alloying composition of, 1442, 1442 (figure)
 CCT diagrams of, 979–980, 980 (figure)
corrosion, aviation fuels and, 224
 hardenability of, 980–981, 980 (figure), 981 (figure), 982 (table)
 measurement of, 982–985, 983 (figure), 984 (figure), 984 (table), 985 (figure), 985 (table)
high-strength low-alloy, 1440–1441, 1441 (figure), 1441 (table)
 hyper-eutectoid and hypo-eutectoid, 1577, 1579 (figure)
 IL lubricants and, 1043–1044, 1043 (figure)
 microstructure of, 1442–1443, 1443 (figure), 1444 (figure), 1445 (figure), 1445 (table)
 phase transformation of, 977, 978 (figure), 979
 rewetting kinetics, 985–986, 986 (figure), 987 (figure)
 TTT diagrams of, 979, 980 (figure)
 uncoated, friction and wear reduction of, 852–853, 852 (figure)
steric stabilization, 390, 390 (figure)
stick/slip test, 1687
stoichiometry, aerospace fuels and, 1302, 1306–1307
storage stability
 of aerospace fuels, 1297–1298, 1313
 of aviation fuels, 224–225
 of distillate fuels, 1393–1394, 1395 (figure)
 of gear lubricants, 749
 low-temperature, 612, 616–617
 of metalworking and machining fluids, 883–884
 test methods for, 254–255
straight oils, 876–877, 899
strapping charts, 1056–1057
stress corrosion cracking (SCC), 1431–1433, 1431 (figure), 1433 (figure)
stress-oriented hydrogen-induced cracking (SOHIC), 1434–1435
Strubeck curve, 1599, 1599 (figure), 1677
 tribological testing of, 853, 854 (figure), 855 (figure)
Strubeck number, 612, 616–617
 of metalworking and machining fluids, 883–884
 test methods for, 254–255
surface oxides, quenching cooling curve analysis and, 993, 995, 995 (figure)
 data analysis of, 1569–1573, 1570 (figure), 1570 (table), 1571 (figure), 1571 (table), 1572 (figure), 1573 (figure)
 quenching cooling curve analysis and, 993, 995, 995 (figure)
 standards for, 1622
 wear surfaces and, 1567–1569, 1569 (figure), 1569 (table)
surface stress, tribology and, 1636, 1636 (figure)
surface tension
 of aerospace fuels, 1305–1306
 of base stocks, 353
 of IL lubricants, 1041, 1041 (table)
surface-to-surface contact wear, 443
surface wax, of petroleum waxes, 107–108
 fire resistance of, 545–546, 546 (table)
 composition of, 535–537, 536 (table)
 applications of, 537, 538 (table)
 composition of, 535–537, 536 (table), 537 (table)
 fire resistance of, 545–546, 546 (table)
sulfur, 18
 active, 908
 ASTM D4814 and maximum, 200–201
 in crude oil, 4, 1422
 in diesel fuel oils, 258–259, 259 (table), 264
 EP agents, 458, 459 (figure), 908–909, 908 (figure), 909 (table)
 in fuel oils, 7–8, 1331 (table), 1332–1333
 in gear lubricants, 746
 greases and, 448, 448 (table)
 hydrocarbon base oils and, 320–321
 in hyperoxide decomposers, 1365, 1370 (figure)
 LPG and, 166
 lubrication and, 1615
 microelemental analysis methods of, 1097, 1097 (table)
 olefins and, 447–448, 448 (figure), 448 (table), 449 (figure), 450 (figure)
in petroleum coke, 1346
in petroleum gas, 346–347
in petroleum pitch, 1339
recovery, 908
 reduction of, 26
ZDDPs and, 909, 909 (table)
sulfur-containing odorants, 169
sulfurized fats, generic structures of, 449 (figure)
synthetic fluids, metalworking and machining fluids, 882–883, 882
synthetic lubricants
 alkylated cyclopentanes, 525–526
 ASTM standards for, 529–531
 classes of, 513–514, 514 (figure)
synthetic hydrocarbons. See also heat transfer fluids
 See also synthetic hydrocarbons.
 See also heat transfer fluids
 surfactants
 aviation fuel quality control and, 232–233
 HFA and HFB fluid composition and, 537, 537 (table)
 suspended-level kinematic viscometers, 1493 (figure)
surface-active agents, 458, 459 (figure), 460–461, 460 (figure)
 of lubricating oils and hydraulic fluids and antioxidants, 600, 601 (table)
surface-active agents, 447–448, 448 (figure), 448 (table)
synthetic fluids, metalworking and machining fluids, 882–883, 882
 fire resistance of, 545–546, 546 (table)
synthetic heat transfer fluids, 965. See also heat transfer fluids
 synthetic hydrocarbons. See butadiene; butylene; C4 olefins; ethylene; olefins; propylene
general features and chemistry of, 535
manufacturing of, 537
material and paint compatibility of, 546, 547 (table)
properties of, 537–540
pump derating and, 547–548, 547 (table)
pump performance testing of, 546, 546 (table)

HFC fluids, 535
applications of, 542–543
composition of, 541–542, 541 (figure)
fire resistance of, 545–546, 546 (table)
general features of, 540–541
manufacturing of, 542
material and paint compatibility of, 546, 547 (table)
properties of, 543–545, 543 (table), 544 (figure), 545 (table)
pump derating and, 547–548, 547 (table)
pump performance testing of, 546, 546 (table)

HFD fluids, 535
lubricity of, 527–528, 528 (table)
manufacturing technology of, 515
oxidation stability of, 526–527, 526 (figure), 527 (table)
PAGs
application and performance characteristics of, 520–522, 521 (figure)
chemical characteristics of, 519–520
chemistry and manufacturing of, 517–518, 517 (figure), 518 (figure)
physical properties of, 518–519, 519 (table), 520 (table)

PAOs
chemical properties and performance characteristics of, 524, 524 (table)
chemistry and manufacturing of, 523, 523 (figure)
history of, 522–523
physical properties of, 523–524, 523 (table)

PFAEs, 525
polyesters and diesters
application and performance characteristics of, 516–517
chemical characteristics of, 516
chemistry and manufacturing of, 513–515, 514 (figure)
physical properties of, 515–516

PPEs, 525
raw materials of, 514–515
relative cost of, 529, 529 (table)
silicones, 524–525
synthetic sulfonic acid substrates, 411–412, 411 (figure), 412 (figure)
synthetic waxes, 79
system component fouling, 1249–1251, 1250 (figure), 1251 (figure)

Tag closed cup tester, 244
Tamura probe, 993
tapered bearing simulator (TBS), 1509–1510
tapered-plug viscometer (TPV), 1509
tapes and bobs, 1057
tapping torque test, 1686, 1686 (figure), 1687 (figure)
Taylor dispersion (TD) technique, 45
technology readiness level (TRL), 1637–1639, 1638 (figure)

hypoiod gear mesh in HMMWV simulation and, 1660–1662, 1660 (figure), 1661 (figure), 1662 (figure), 1663 (figure)
micropitting and, 1654–1655, 1655 (figure)
micropitting and spalling and, 1655–1656, 1656 (figure), 1657 (figure)
objectives and strategy of, 1658
oil types and boundary lubrication and, 1653–1654, 1654 (figure)
pressure-viscosity coefficient and, 1645–1646, 1646 (figure), 1647 (figure)

RIP concept oil in HMMWV simulation and, 1662–1664, 1663 (figure), 1664 (figure)
run-in polishing and, 1658–1660, 1659 (figure)
suffing load capacity testing and, 1651–1653, 1652 (figure), 1653 (figure)
suffing threshold for spiral bevel gear and, 1654, 1655 (figure), 1656 (figure)
traction coefficient, 1646–1650, 1647 (figure), 1648 (figure), 1648 (table), 1649 (figure), 1650 (figure)
traction modeling and, 1650–1651, 1651 (figure)
WAM testing for micropitting and spalling and, 1656–1658, 1657 (figure), 1658 (figure), 1659 (figure)
temperature, kinematic viscosity relationship to, 1497, 1498 (figure), 1499–1500, 1499 (figure), 1500 (table)
temperature gradient method, for quenching cooling curve analysis, 1019, 1022

Temperature measurement
ASTM standards for, 1277–1278
devices for, 1269–1270
constant compared to controlled temperature and, 1275
immersion depth and, 1275–1276, 1276 (table)
thermal conduction and, 1275–1277, 1276 (table), 1277 (figure)
volume ratio and, 1275
historical development of, 1269, 1269 (table)
LiG thermometers for, 1270–1271, 1270 (figure), 1270, 1271 (figure)
RTDs for
PRBs, 1271–1273, 1272 (figure), 1273 (figure)
thermistors, 1273–1275, 1274 (figure)
thermocouples, 1274–1275, 1274 (figure)
temperature operating window (TOW), 652, 653 (figure)
temperature stability, of distillate fuel oils, 1394–1395
tempering, 869, 896–897, 897 (figure)
temporary viscosity loss (TVL), 480
Tensi agitation system, 996–999, 997 (figure)
tensiometer, for pipeline corrosion, 1462–1463, 1462 (figure)
terrestrial toxicity tests, 1558
tetraethyl lead (TEL), 155, 180
tetrahydroxynaphthalene, 1426–1427, 1427 (figure)
tetramethyl lead (TML), 180
thermal conductivity
of base stocks, 352
of compressor lubricants, 715–716
of gasoline, 203
of heat transfer fluids, 968
thermal cracking
invention of, 333
for olefin production, 336, 339
thermal expansion
of base stocks, 352
of petroleum coke, 1349–1350, 1349 (figure)
thermal measurement and analysis, tribology and, 1642, 1642 (figure)
thermal methods, for asphaltene deposition prevention, 66
thermal spraying, 869
thermal stability
of aerospace fuels, 1313–1314
antiwear agents and, 445, 447 (figure)
dispersants and, 404–405
for gear lubricants, 748
of heat transfer fluids, 967
of hydraulic fluids, 648–651, 650 (figure), 651 (table)
of hydrocarbon base oils, 316, 317 (figure), 318 (figure)
of olefinic base oils, 316, 317 (figure), 318 (figure)
material and paint compatibility of, 546, 546 (table)
for olefin production, 336, 339
properties of, 543–545, 543 (table), 544 (figure), 545 (table)
pump derating and, 547–548, 547 (table)
pump performance testing of, 546, 546 (table)

thermal spraying, 869
thermal stability
of aerospace fuels, 1313–1314
antiwear agents and, 445, 447 (figure)
dispersants and, 404–405
for gear lubricants, 748
of heat transfer fluids, 967
of hydraulic fluids, 648–651, 650 (figure), 651 (table)
of hydrocarbon base oils, 316, 317 (figure), 318 (figure)
of olefinic base oils, 316, 317 (figure), 318 (figure)
thermal tars (TTTs), 1343–1344
thermostits, 1273–1275, 1274 (figure)
thermocouples (TCs), 1274–1275, 1274 (figure), 1508
thermodynamic colloidal model, of asphaltene phase behavior, 53
thermodynamic micellization model, of asphaltene phase behavior, 55
thermodynamic properties, static gases and, 1318–1319
thermometric titration, 1081, 1081 (figure)
thickeners
in HFC fluid composition, 541
lubricating greases and, 937–939, 937 (figure)
polymeric, for gear lubricants, 730–731
thickening efficiency, ester polymers and, 488, 485 (figure)
thin-film coatings, for automotive engine lubricants, 849, 850 (figure), 851 (figure), 852
thixotropy, 1487
threading operations, machining, 866
3M equation, 89, 91–92
threading test, 1686, 1686 (figure), 1687 (figure)
low-speed high torque hypoid test, for gear lubricants, 748
losses, hydraulic fluids and, 669–670, 670 (figure)
cranking, friction modifiers and, 441, 442 (figure)
lubricating greases and, 950
for gear lubricants, 746–747
for lubricating greases, 937–939, 937 (figure)
for tribology bench test, 1685–1686, 1685 (figure)
for gear lubricants, 746–747
for lubricating greases, 937–939, 937 (figure)
for tribology bench test, 1685–1686, 1685 (figure), 1686 (figure)
titanium test, of used oil, 33
titration, of lubricants
advantages of, 1071
potentiometric indication of, 1073–1077, 1074 (table), 1076 (figure), 1076 (table)
thermometric, 1081, 1081 (figure)
visual indication of, 1071, 1073, 1073 (figure), 1073 (table)
toluene, 83
tool wear, metal-removal fluids and, 888–891, 888 (table), 890 (table), 891 (table)
torque
cranking, friction modifiers and, 441, 442 (figure)
losses, hydraulic fluids and, 669–670, 670 (figure)
low-speed high torque hypoid test, for gear lubricants, 748
lubricating grease flow properties and, 945–946
tapping test, 1686, 1686 (figure), 1687 (figure)
Toscoal process, 117, 117 (figure)
total acid number (TAN), 570, 572 (figure), 573 (figure). See also acid number of petroleum oil, 1151
total base number (TBN) of detergents and, 423–425
engine oils and, 759
total observed volume (TOV), 1066
total wax content, of petroleum waxes, 108
toxicity
acute test methods of, 1552 (table), 1556, 1557 (figure)
aquatic tests of, 1556
chronic test methods of, 1552 (table), 1556–1558
complex mixture, environmental characteristics and, 1555–1556
nonaquatic test methods of, 1558
Toxic Substances Control Act (TSCA), 498, 499

trace metals
in gas turbine fuel oils, 265–266, 265 (table)
in turbine lubricating oils and hydraulic fluids, 628–629
traction coefficient, tribology TRL and, 1646–1650, 1647 (figure), 1648 (figure), 1648 (table), 1649 (figure), 1650 (figure)
tration modeling, tribology TRL and, 1650–1651, 1651 (figure)
tractor fluids, hydraulic fluids and, 671
transformation processes, environmental characteristics and, 1543–1544
transition metals, as oxidation promoters and inhibitors, 382, 384 (figure), 385, 385 (figure), 1367–1368, 1375 (figure)
transmission-electron-microscopy (TEM), 43–44, 44 (figure)
transmission fluids, 322
transparency, metal-removal fluids and, 886–888, 886 (figure), 887 (figure)
traction processes, environmental characteristics and, 1543, 1543 (figure), 1543 (table)
trepanning operations, machining, 866
triaryl phosphates, 597–598, 598 (table)
tribochemical wear, 1585–1586
tribologial Aspect Number (TAN), 1678–1679
tribology, 842
alternative base stocks and, 843
definition of, 1631
design and development of, 1631–1632, 1632 (figure)
Hertzian contact, deformation and, 1632–1635
history of, 1671–1672
parameters of, 1639 (figure)
entraining velocity, 1639–1640
Lambda ratio, 1640
normal load, 1640–1641
pressure distribution, 1640
sliding velocity, 1640
physics-based empirical modeling in, 1664–1668, 1666 (figure), 1668 (figure)
science and technology topics in, 1636–1637, 1637 (figure)
SCM and, 1666–1669, 1667 (figure), 1669 (figure)
Striebeck curve testing and, 853, 854 (figure), 855 (figure)
superficial micropitting and, 1643, 1644 (figure)
micro-scruffing and, 1643, 1644 (figure)
polishing wear and, 1643, 1643 (figure)
scoffing and, 1644–1645, 1645 (figure)
structural elements of lubricated contact and, 1635–1636, 1635 (figure), 1636 (figure)
surface stress and, 1636, 1636 (figure)
thermal measurement and analysis and, 1642, 1642 (figure)
TRL in, 1637–1639, 1638 (figure)
hypoid gear mesh in HMWWV simulation and, 1640–1662, 1660 (figure), 1661 (figure), 1662 (figure), 1663 (figure)
micropitting and, low-cycle, 1654–1655, 1655 (figure)
micropitting and spalling and, 1655–1656, 1656 (figure), 1657 (figure)
objectives and strategy of, 1658
oil types and boundary lubrication and, 1653–1654, 1654 (figure)
pressure-viscosity coefficient and, 1645–1646, 1646 (figure), 1647 (figure)
RIP concept oil in HMWWV simulation and, 1662–1664, 1663 (figure), 1664 (figure)
ramp-in polishing and, 1658–1660, 1659 (figure)
scruffing load capacity testing and, 1651–1653, 1652 (figure), 1653 (figure)
scruffing threshold for spiral bevel gear and, 1654, 1655 (figure), 1656 (figure)
traction coefficient, 1646–1650, 1647 (figure), 1648 (figure),
1648 (table), 1649 (figure), 1650 (figure)
traction modeling and, 1650–1651, 1651 (figure)
WAM testing for micropitting and spalling and, 1656–1658,
1657 (figure), 1658 (figure), 1659 (figure)
WAM technology and, 1641–1642, 1641 (figure), 1646,
1646 (figure), 1648, 1648 (figure)
tribology test systems
bench test
block-on-ring test machine for, 1683–1685, 1684 (figure),
1685 (figure), designing, 1675
four-ball EP test device for, 1683, 1683 (figure),
1684 (figure)
four-ball test device for, 1681, 1682 (figure)
four-ball wear test device for, 1682–1683, 1683 (figure)
linear reciprocation test machine for, 1688–1689,
1688 (figure)
multipurpose test machine for, 1687–1688, 1687 (figure)
pin and vee block device for, 1679–1680, 1680 (figure),
1681 (figure)
pin-on-disk device for, 1680–1681, 1681 (figure)
selection of, 1673, 1678–1679
tapping torque test machine for, 1686, 1686 (figure),
1687 (figure)
Timken EP tester for, 1685–1688, 1685 (figure), 1686 (figure)
component test
constant volume vane pump testing, 1691
design of, 1675–1676
FZG gear rig for, 1689–1691, 1690 (figure), 1691 (figure)
designing fundamentals of, 1673–1674
duration in, 1678
load in, 1676
materials in, 1678
selection and designing of, 1674–1676
special atmospheres in, 1678
special testing in, 1678
speed in, 1677, 1677 (figure)
temperature in, 1676
terminology related to, 1695–1699
test lubricant in, 1678
type of, 1672–1673, 1672 (figure)
triaaryl phosphates, 597–598, 598 (table)
triaaryl phosphate (TLP), 454, 455 (figure)
triaaryl phosphate (TLP), 454, 455 (figure)
triaaryl trithiophosphate (TLTTP), 454, 455 (figure)
trilene®, 393
trimethylolpropane, 555–556, 556 (figure)
true boiling point, 347
ture value, 1704
true value, 1704
true value, 1704
true value, 1704
tunable diode laser absorption spectroscopy (TDLAS), 1464
turbine entry temperature distribution, of aerospace fuels, 1310
turbine lubricating oils and hydraulic fluids, 581–582
additives for, 598–603, 599 (figure), 599 (table)
analysis data of, 636
antioxidants and
ASTM tests for, 601–603, 602 (figure), 603 (figure),
604 (figure), 604 (table)
structures of, 598, 600, 600 (figure)
synergism of, 600, 601 (table)
antwear agents for, 603–608, 606 (figure), 607 (figure),
608 (figure)
API standards for, 640
ASTM standards for, 601–603, 602 (figure), 603 (figure),
604 (figure), 604 (table), 637–639
base stocks for
diesters and polyesters, 595–596, 596 (table),
597 (figure)
hydrocarbon oils, 590, 591 (figure), 592 (table)
hydrocracked/hydrotreated, 592–593, 593 (table),
594 (figure)
PAOs, 593–595, 595 (table)
PAOs, 593, 595 (table)
solvent-refined types, 590, 592 (figure), 593 (table)
triaryl phosphates, 597–598, 598 (table)
chlorine content in, 629
classification of, 608, 609 (table)
cleanliness of, 627–629
cold flow properties of, 1526–1527, 1527 (figure)
compatibility aspects of, 629, 631–632, 631 (table)
duty cycle of, 589
EP agents for, 605–608, 606 (figure), 607 (figure), 608 (figure)
federal standards for, 610 (table), 640
fire resistance of, 585
foam inhibitors for, 607–608, 608 (figure)
function of, 584
future trends of, 637
IEC standards for, 640
ISO standards for, 640
lubrication performance of, 627, 627 (figure)
maintenance of, 633, 634 (table), 636
military specifications for, 610–611, 612 (table), 640
operating environment for, 584–590, 589 (table)
oxidation testing
ASTM D2070, 1374–1376, 1378 (figure)
ASTM D4636, 1376–1377, 1379 (figure)
ASTM D5846, 1378–1379, 1380 (figure)
ASTM D6514, 1379
DIN 51532-2, 1379, 1380 (figure)
IP-280, 1373–1374, 1377 (figure), 1378 (figure)
IP-306, 1374
performance requirements for
acid number, 617, 618 (figure)
air release, 619–620
appearance, 612
comparison of, 611–612, 613 (table), 615 (table)
demulsibility, 622–623
density, 618
fire resistance, 620–622
foaming, 619–620
low-temperature storage stability, 612, 616–617
pour point, 612, 616–617
viscosity, 612, 615 (figure), 616 (figure)
water content, 617–618
water separability, 622–623
rust and corrosion behavior of, 626–627
rust and corrosion inhibitors for, 603–605, 605 (figure)
SAE standards for, 640
stability characteristics of
hydrolytic stability, 625, 625 (figure)
oxidation stability, 598, 599 (figure), 599 (table),
623–624, 624 (figure), 1373–1374, 1377 (figure)
1378 (figure)
shear stability, 625–626
thermal stability, 624–625, 1374–1376, 1378 (figure)
standards for, 608, 610–611, 610 (table), 611 (table),
612 (table), 637–640
system cleaning and flushing for, 636–637
thermal/oxidative stress and, 587
top-up rates of, 589
trace metals in, 628–629
volatility of, 629
volume resistivity of, 629, 630 (table)
turbine oil stability test (TOST), 601, 603 (figure), 649–650,
649 (figure), 649 (table), 707
turbines
 cleaning and flushing of, 636–637
 gas, 582–583, 583 (figure)
 aero-derivative, 585–586
 heat input and removal for, 586, 588 (figure)
 lubrication system for, 587 (figure)
 steam, 582
 control fluid system of, 586 (figure)
 shaft driven lubrication system of, 585 (figure)
 water, 583–584
 wind, 584
turbine, gas, 582–583, 583 (figure)
 combustion and flushing of, 636–637
 aero-derivative, 585–586
 heat input and removal for, 586, 588 (figure)
 lubrication system for, 587 (figure)
 steam, 582
 control fluid system of, 586 (figure)
 shaft driven lubrication system of, 585 (figure)
 water, 583–584
 wind, 584
turboprop, 582–583
 pressure control, 582
 steam, 585
 water, 586
 wind, 587

turbulence, combustion and, 1280–1281, 1281 (figure), 1285
turning operations, machining, 865–866
two-body abrasive wear, 1583, 1583 (figure)
U
ullage, 1057
ultraviolet (UV) spectroscopy, for hydrocarbon base oils, 307
uncoated steel, friction and wear reduction of, 852–853, 852 (figure)
underground storage tanks (USTs), 1246–1247, 1248 (figure), 1260, 1261 (figure)
uniform pipeline corrosion, 1427–1428
Union Carbide process, 117–118
unique point, 1319, 1319 (figure)
unique process line, 1319–1320, 1320 (figure), 1320 (table)
United Kingdom, LSE process, 122
universal gas constant, 1318–1319
universal oil products (UOP), 350
unleaded gasoline, history of, 182
unsaturated hydrocarbons.
 See olefins
urea-dewaxing, 288
used oil
 contamination in, 30–31, 31 (table)
 definition of, 29
 disposal of, 928
 EPA criteria of, 922–923
 EPA regulatory definition of, 297
 feedstock, 30
 history of, 29–30
 hydrocarbon base oils and, 297–302
 for re-refining
 assessment of, 30–31, 30 (table), 31 (table)
 BER process, 299
 by-products of, 297–298
 flow diagram for, 299 (figure)
 IFP process, 299
 KTI process, 299–300, 300 (figure)
 Meinken process, 299
 quality comparison of, 300, 301 (table)
 testing of, 31–33, 33 (table)
 uses of, 300, 302, 302 (figure)
 wear metals in, 1086–1088, 1087 (table)
V
vacuum distillation, 286
vacuum distillation residua (VDR), 1340, 1343–1344
vacuum resid, 2, 3 (table)
valve-train wear test, 780 (table), 790 (table)
vanadium
 in gas turbine fuel oils, 265 (table), 266
 in petroleum coke, 1347
 test, of used oil, 33
van der Waals equation, 89
vane compressors, rotary, 690–691, 691 (figure)
vane-on-disk test, 1687, 1687 (figure)
vane pump tests, 658–659
van Krevelen diagrams, 1158–1160, 1160 (figure)
vapor, LPG removal of, 171
vapor control systems, history of, 182–183
vapor-liquid ratio, 199 (figure)
vapor lock temperature, 199–200
vapor pressure
 ASTM D4814 for gasoline and, 198–200, 199 (figure)
 environmental characteristics and, 1541
 of HFC fluids, 543
 LPG and, 155–157
volatility ASTM standards for
 ASTM D323, 1205–1206, 1207 (figure)
 ASTM D1267, 1210–1211, 1210 (figure)
 ASTM D2533, 1209–1210
 ASTM D4953, 1206–1207, 1207 (figure)
 ASTM D5188, 1209
 ASTM D5190, 1207, 1208 (figure)
 ASTM D5191, 1207–1208
 ASTM D5482, 1208–1209
 ASTM D6377, 1209
 ASTM D6378, 1209
 ASTM D7975, 1211
 importance of, 1204–1205
 international methods compared to, 1211, 1211 (table)
 precision values for, 1206 (table)
vapor-pressure osmometry (VPO), 44–46
variable-valve timing (VVT), 761
varnish, formation of, 367
vehicle emissions
 aerospace fuels and combustion, 1310–1311
 automotive engine design improvements for, 769–772
 automotive engine lubricants and reduction of, 842, 842 (figure)
 combustion and regulated, 1285
 current standards for, 184–186
 Europe, United States, and Japan standards for, 762 (figure)
 future trends in, 840 (figure)
 history of standards for, 181
 lubricants and, 355–356
 vehicle (octane number requirements) ONRs, 194–196
 velocity
 entraining, tribology and, 1639–1640
 multiphase velocity, pipeline corrosion and, 1436, 1436 (figure)
 sliding, tribology and, 1640
 Verband Chemischer Ingenieure (VCI) classification system, 574, 574 (figure)
vessel general permit (VGP), 522, 548, 548 (table), 1539
visbreaking, 18–19, 19 (figure)
viscoelastic materials, 1486
viscous flow, 1385–1386
volumetric technique, for asphaltene precipitation onset pressure, 50
viscosity
 absolute, of water, 1505–1506, 1506 (table)
 of aerospace fuels, 1305
 antioxidants and, 385, 386 (figure)
 apparent, 1487
 lubricating grease flow properties and, 945
 of aqueous polymer quenchants, 1012–1013, 1013 (figure)
 asphaltene impact on, 46, 47 (figure)
 ASTM standards for, 1506–1508, 1506 (table), 1507 (figure), 1508 (table)
 of automotive gear lubricants, 332 (table), 770
viscosity index (VI), 22
of base stocks, 352
boiling range and, 312
CCS, 315, 748, 1530–1531, 1530 (figure)
of compressor lubricants, 701–702
definition of, 309, 1486
of diesel fuel oils, 244, 263–264
dispersants and, 405–406
dynamic, 1486
of engine oils, 331 (table), 758, 759
environmentally acceptable ester-based hydraulic fluids and, 564, 564 (figure)
ester polymers and degradation loss of, 487–488, 490 (figure)
ester polymers and shear-related loss of, 484–487, 486 (figure), 487 (figure), 488 (figure), 489 (figure)
fuel economy and, 432–433, 433 (figure), 434 (figure)
of fuel oils, 1330–1331, 1331 (table)
of gas/liquid mixtures under pressure, 715
of gasoline, 203
of gear lubricants, 744
of GTL base stocks, 295–296, 296 (figure)
of heat transfer fluids, 966, 970, 970 (table)
of HFA and HFB fluids, 537–539
of HFC fluids, 543, 544 (figure)
HTHS, 272, 759, 831, 1508–1511, 1509 (figure), 1510 (figure), 1511 (table)
of IL lubricants, 1040–1041, 1040 (table), 1042, 1043 (table)
of industrial lubricants, 322–323
jet fuel and, 217, 218 (figure)
kineumatic, 1486, 1486 (table)
history of, 1493–1496
petroleum oil flow properties and, 1489–1493, 1491 (table), 1492 (figure), 1492 (table), 1493 (figure), 1494 (figure)
temperature relationship to, 1497, 1498 (figure), 1499–1500, 1499 (figure), 1500 (table)
low-temperature high-shear, lubricants and, 1529–1531, 1529 (table), 1530 (figure), 1530 (table), 1531 (figure), 1531 (table)
lubricants and, 272, 354, 355 (figure)
metal-removal fluids and, 886–888, 886 (figure), 887 (figure)
metalworking fluids and, 874–875, 874 (figure)
of petroleum pitch, 1335
petroleum waxes and, 102, 103 (figure)
of polyolesters and diesters, 315
pressure and, 311–312, 311 (figure), 312 (figure), 1603–1605, 1604 (figure), 1605 (figure), 1605 (table)
quenching and, 1007–1008
SAE J300 classification of, 760
SAE J306c classification of, 738, 740 (table)
Saw classification system of, 351
shear rate and, 1508–1509, 1509 (figure)
temperature impact on, 309–310, 310 (figure), 311 (table)
turbine lubricating oils and hydraulic fluids and, 612, 615 (figure), 616 (figure)
visualization of, 1487 (figure)
viscosity gravity constant (VGC), 316, 317 (table), 318
viscosity index (VI), 22
calculation of, 1501, 1502 (table), 1503 (table), 1504, 1504 (table)
for gear lubricants, 746
historical development of, 1501
improvers, 476, 477 (figure), 478 (figure)
for automotive engine lubricants, 768
for engine oils, 757
for gear lubricants, 735 (table)
of hydraulic fluids and, 668
of mineral oil base stocks, 292, 292 (figure)
pressure considerations for, 1504–1505, 1505 (figure)
uses of, 1500–1501
viscosity modifiers (VMs). See also dispersant viscosity modifiers
classes of commercially available, 476
ester polymers, 481–488
olefin-based polymers, 478–481, 479 (figure), 479 (table), 480 (table), 481 (figure)
comparison of, 491 (table)
for compressor lubricants, 699 (table), 700
molecular weights of, 475
oil thickening and, 476, 476 (figure)
principle function of, 475
single-grade and multi-grade oils, 476, 477 (figure), 478 (figure)
temperature and, 475–476, 476 (figure)
viscosity-temperature constant (VTC), 310
visual inspection test, of used oil, 31
volatile matter, in petroleum coke, 1345–1346, 1346 (table), 1347 (table)
volatility
of aerospace fuels, 1304–1305
ASTM D4814 for gasoline and, 197–200, 197 (figure), 197 (table)
ASTM standards for, 1212
of aviation gasoline, 221
of base stocks, 352
boiling point and, 313–314, 314 (figure)
crude oil distillation and, ASTM standards
ASTM D2892, 1200–1201, 1201 (figure), 1202 (table)
ASTM D5236, 1201–1203, 1203 (figure), 1204 (table)
international methods compared to, 1203
precision values, 1200, 1200 (table)
definition of, 312, 1171
density of diesel fuel oils, 244, 263
distillation and, ASTM standards
ASTM D6450, 1179, 1181 (table), 1181–1182, 1182 (table)
ASTM D850, 1173–1174, 1174 (table), 1176, 1178 (table), 1180 (table)
ASTM D1078, 1174 (table), 1176–1178, 1179 (table), 1180 (table)
ASTM D1160, 1179, 1181–1182, 1182 (figure), 1183 (table), 1184 (table), 1186 (table), 1187 (table), 1189 (table), 1190 (table), 1192 (table), 1193 (table)
ASTM D7344, 1174–1179, 1180 (table)
ASTM D7345, 1179, 1181 (table)
importance of, 1171–1172
international standards compared to, 1182, 1193 (table)
environmental characteristics and, 1554
fire point and, 1195
flammability and, ASTM standards
ASTM D56, 1194, 1196 (figure)
ASTM D92, 1194–1195, 1197 (figure)
ASTM D93, 1195–1196, 1198 (figure)
ASTM D1310, 1196
ASTM D3278, 1197, 1199 (figure)
ASTM D3828, 1197
ASTM D3941, 1197
ASTM D4814, 1197
ASTM D6450, 1198
ASTM D7094, 1198–1199
ASTM D7236, 1199
fire point and, 1195
flash point and, 1192–1194, 1194 (table), 1195 (table), 1196 (table)
international methods compared to, 1199–1200, 1200 (table)
flash point and, 312, 313 (figure), 314 (table), 1192–1194, 1194 (table), 1195 (table), 1196 (table)
fuel economy and, 432, 434 (figure)
GC assessment of, 313
of GTL base stocks, 295, 296 (figure)
of hydrocarbon base oils, 312–314, 313 (figure), 314 (figure), 314 (table)
international standards for, 1213
of jet fuel, 221–222, 222 (figure)
lubricants and, 1079–1080
Noack test for, 313, 759
of polyesters and diesters, 516
of turbine lubricating oils and hydraulic fluids, 629
vapor pressure and, ASTM standards
ASTM D323, 1205–1206, 1207 (figure)
ASTM D1267, 1210–1211, 1210 (figure)
ASTM D2533, 1209–1210
ASTM D4953, 1206–1207, 1207 (figure)
ASTM D5188, 1209
ASTM D5190, 1207, 1208 (figure)
ASTM D5191, 1207–1208
ASTM D5482, 1208–1209
ASTM D6377, 1209
ASTM D6378, 1209
ASTM D7975, 1211
importance of, 1204–1205
of compressor lubricants, 703
of hydrocarbon base oils, 312–314, 313 (figure), 314 (figure)
international standards for, 1213
oil, 29, 297
water-absorbing cartridges, 231
water-based, metalworking and machining fluids, 877–879, 878 (figure), 878 (table), 879 (figure), 879 (table)
water content:
absolute viscosity of, 1505–1506, 1506 (table)
aerospace fuels and, 1314–1315
aqueous polymer quenchants and, 1014
in aviation gasoline, 217, 218 (figure), 219
of compressor lubricants, 703
control and removal of, 250–251
crude oil mixture with, pipeline corrosion and, 1417, 1418
(figures 1420–1422, 1421 (table)
dissolved in propane, phase behavior of, 159–160, 159 (table), 160 (table)
in gear lubricants, 746
in heat transfer fluids, 970–971
in HFA and HFB fluid composition, 536
in HFC fluid composition, 541
hydraulic fluids and, 659–661
in jet fuel, 217, 218 (figure), 219
LPG and, 158–163
measurement of, 164–165
sources of, 164
lubricating greases and, 952–953, 953 (figure)
metalworking fluids and quality of, 900
microbes and, 1240, 1240 (figure)
pipeline corrosion control and, 1446, 1447 (figure), 1448, 1448 (figure)
for quenching, 1025–1027, 1025 (figure), 1025 (table), 1026 (figure), 1027 (figure), 1028 (figure)
quenching tests and, 1008–1009, 1009 (figure)
test of, used oil and, 31
pipeline corrosion of, 1417
pipeline corrosion control and, 1446, 1447 (figure), 1448
water hazard classification (WGK), 574, 574 (figure)
water-in-oil emulsion, 472, 474 (figure)
in metalworking fluids, 877–879, 878 (figure), 878 (table), 879 (figure), 879 (table)
water-miscible metalworking fluids
cast iron chip test for, 1413, 1413 (figure)
condition monitoring for biodeterioration and, 1252–1255, 1252 (figure), 1253 (figure), 1254 (figure)
water phase wetting, pipeline corrosion and, 1435
water separability, 323
turbine lubricating oils and hydraulic fluids and, 622–623
water solubility, environmental characteristics and, 1541, 1542 (figure)
water spray-off, lubricating greases and, 953, 953 (figure)
water tolerance, ASTM D4814 and, 201–203
water turbines, 583–584
water washout, lubricating greases and, 952–953
wax crystals, low-temperature operability and, 248–249
waxy crude oil, 81–83, 82 (figure)
weak organic acids, 1243
wear. See also antiwear agents; scuffing; tribology test systems
abrasive, 443, 725, 725 (figure), 888, 1582–1583, 1583 (figure)
additives and, 371–372
adhesive, 443, 725, 888, 1577–1579, 1580 (figure), 1581, 1582, 1582 (figure)
antioxidants and, 385, 386 (figure)
Archard's constant, 1579, 1582, 1582 (table)
ASTM standards for, 1691–1692
automotive engine lubricants reduction of, 841
additives, 848–849, 850 (figure), 851 (figure)
alternative base stocks, 842–846, 843 (figure), 844 (table), 845 (figure), 846 (figure)
estolides, 847, 847 (table)
hydrocarbons, 846–847, 847 (figure)
low and ultra-low engine oils, 847–848, 848 (table), 849 (figure)
thin-film coatings, 849, 850 (figure), 851 (figure), 852 tribological testing of Stribeck curves, 853, 854 (figure), 855 (figure)
uncoated steel, 852–853, 852 (figure)
bulk material properties and, 1574–1577, 1578 (table), 1579 (figure), 1579 (table)
cavitation, 1584, 1584 (figure)
cavitation corrosion and, 1585
corrosion, 443, 888, 1584–1585, 1584 (figure), 1585 (figure)
debris analysis, 1592, 1594 (figure)
delamination, 1589–1590, 1590 (figure)
diffusive, 888
DIN standards for, 1693
Engine Oil Aeration Test, 828 (table)
EP agents and controlled, 458, 458 (figure)
erosion, 1584–1585, 1585 (figure)
fatigue, 443, 1585–1586, 1586 (figure), 1587 (figure)
flash temperature and, 1592, 1592–1594, 1594 (figure), 1594 (table)
fretting, 951, 1587–1588, 1587 (figure), 1588 (figure)
hydraulic fluids protection from, 651–654, 652 (figure), 653 (figure), 654 (figure)
ISO standards for, 1693
load and, 453, 454 (figure)
lubricating greases and, 950–952, 951 (figure)
maps, 1593–1599, 1596 (figure), 1597 (figure), 1598 (figure),
1599 (figure)
MWR, 1616–1618, 1617 (figure), 1618 (table), 1619 (figure)
new surface structure and, 1574, 1576 (figure)
oxidational, 1585, 1586 (figure)
Peugeot TU3M test of, 779 (table), 789 (table)
polishing, 366, 725, 725 (figure), 1577–1578, 1581 (figure)
superficial tribology and, 1643, 1643 (figure)
prenature, 888
Roller Follower Wear Test, 811 (table), 819 (table), 828 (table)
solid lubricants controlling, 465, 465 (figure)
start-up, shutdown time and, 432, 433 (figure)
structural elements of, 1573–1577, 1573 (figure)
subsurface structure and, 1574, 1576 (figure), 1577 (figure),
1578 (figure)
surface films reducing, 1574, 1574 (figure), 1575 (figure),
1576 (figure)
surface-to-surface contact, 443
testing, 1590–1592, 1591 (figure), 1592 (figure), 1593 (figure),
1594 (figure)
timing chain-wear test, 771, 771 (figure), 788 (table), 796
tools, metal-removal fluids and, 888–891, 888 (table),
890 (table), 891 (table)
tribochemical, 1585–1586
material surfaces and, 1606, 1607 (table)
valve-train test of, 780 (table), 790 (figure)
wear material surfaces, 1606, 1607 (table)
wear metals, in used oils, 1086–1088, 1087 (table)
wear preventive characteristics test, of grease, 951
wear surfaces, lubrication and, 1567–1569, 1569 (figure),
1569 (table)
weathering, LPG and, 157–158
wedge-type lubricant films, 873, 873 (figure)
weight conversion factor (WCF), 1067
weighted bottle and beaker samplers, 1059–1060, 1060 (figure)
weight in air, 1067
weight of wax applied during coating, of petroleum waxes, 108
Weissenberg effect, 1487
welding, 868
wet analytical methods, for hydrocarbon base oils, 308
wet battery cell, 1405–1406, 1406 (figure)
wet chemistry methods, in elemental analysis, 1088, 1091 (table)
“wet” gas, 147
wettability alteration, asphaltene deposition and, 63, 64 (figure)
wettability of metal surface, in pipeline corrosion, 1418–1420,
1421 (figure)
wheel-bearing grease life, 949–950, 950 (figure)
wick tests, for fire resistance, 622, 622 (figure), 623 (figure)
Wilsonville Pilot Plant, CTSL processing and, 123–124, 124 (figure),
125 (table)
wind turbines, 584
Wolf Strip Oxidation Test, 707
worms, in toxicity tests, 1558
worn surface structure, 1573–1577
wrinkled laminar flame, 1281, 1281 (figure)
X
X-ray fluorescence spectrometry (XRF), 1094–1095, 1095 (table)
X-ray small-angle scattering (SANS), 43
Y
yield stress
definition of, 1487
for engine oils, 759
Young-Dupré equation, 1463
y-strainers, for heat transfer fluid system, 972
Z
Zeldovich mechanism, 1291
“Zeronize,” 842
Ziegler-Natta catalysts, 411
zinc dialkyldithiophosphates (ZDDPs), 757, 758
as antiwear agents, 444–447, 446 (figure), 446 (table),
447 (figure), 849
formation of, 729
function of, 766–767
hydroperoxide decomposition and, 379, 379 (figure)
oxidation inhibition by, 1365–1366, 1372 (figure)
radical scavengers and, 379, 380 (figure)
sludge formation by, 650, 650 (figure)
structure of, 446 (figure), 767 (figure)
sulfur and, 909, 909 (table)
for turbine lubricating oils and hydraulic fluids, 600,
600 (figure)
zinc test, of used oil, 33
Zisman plots, 1576