Appendix B

MATERIALS TESTING REPORT:
UNIFIED CLASSIFICATION SYSTEM
ASTM D2487

<table>
<thead>
<tr>
<th>Identification</th>
<th>Coarse fraction</th>
<th>Fine fraction</th>
<th>Total soil</th>
<th>Classification</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Testing section sample No.**
- **Test hole No.**
- **Field sample No.**
- **Depth (B):**
- **Minimum size (mm):**
- **Particle shape:**
- **Particle condition:**
- **Gravel (in. to No. 4):**
- **Sand (No. 4 to 200):**
- **Fines (No. 200):**
- **Plasticity:**
- **Dry strength:**
- **Dilatancy:**
- **Organic content (wt.):**
- **Residual to HCL:**
- **Color (code):**

Description
(classification, grading, structure, consistency, moisture condition, inclusions, etc.)

Group symbol

<table>
<thead>
<tr>
<th>Remarks</th>
<th>Signature</th>
<th>Title</th>
<th>Date</th>
</tr>
</thead>
</table>

Fig. 1B—Materials testing report: unified classification system (ASTM D2487).
MATERIALS TESTING REPORT:
UNIFIED SOIL CLASSIFICATION SYSTEM VISUAL-MANUAL PROCEDURE
ASTM D2488

<table>
<thead>
<tr>
<th>Test</th>
<th>Description</th>
<th>Symbol</th>
<th>Identification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Angular</td>
<td>Irregular shape: sharp edges.</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>Subangular</td>
<td>Irregular shape; fairly sharp edges.</td>
<td>SA</td>
<td></td>
</tr>
<tr>
<td>Subrounded</td>
<td>Irregular shape, rounded edges.</td>
<td>SR</td>
<td></td>
</tr>
<tr>
<td>Rounded</td>
<td>Fairly regular shape; rounded edges.</td>
<td>R</td>
<td></td>
</tr>
</tbody>
</table>

Particle condition
- **Soft** S: Rubber pestle will break particles.
- **Vesicular** V: Individual grains contain air voids.
- **Dense** D: Massive: grains contain no air voids.
- **High** H: Tough thread, will remold before plastic limit.
- **Medium** M: Medium tough thread, crumbles below plastic limit.
- **Low** L: Weak thread, will not remold at plastic limit.
- **None** N: Will not form thread.

Plasticity
- **High** H: Difficult to break by finger pressure.
- **Medium** M: Considerable finger pressure to crumble
- **Low** L: Will crumble at light finger pressure.
- **None** N: Will not form soil pat.

Dry strength
- **Rapid** R: Water surfaces immediately.
- **Slow** S: Water surfaces slowly.
- **None** N: Water will not surface.

Dilatance
- **Rapid** R: Water surfaces immediately.
- **Slow** S: Water surfaces slowly.
- **None** N: Water will not surface.

HCL
- **Positive** +: Effervescence
- **Negative** -: No reaction

Organic odor
- **Strong** S: Strong odor when moist and hot.
- **Weak** W: Weak odor when moist and hot.
- **None** N: No organic odor.

<table>
<thead>
<tr>
<th>Group</th>
<th>Organic odor</th>
<th>Visual examination</th>
<th>Character of fines (≤ No. 40)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Grading</td>
<td>Percent fines</td>
</tr>
<tr>
<td>ML</td>
<td>Weak</td>
<td></td>
<td>Over 50</td>
</tr>
<tr>
<td>CL</td>
<td>"</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td>CH</td>
<td>"</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td>MH</td>
<td>"</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td>OL,OH</td>
<td>Strong</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td>SM</td>
<td>Weak</td>
<td>Not a criterion for classification</td>
<td>12 - 50</td>
</tr>
<tr>
<td>GM</td>
<td>"</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td>SC</td>
<td>"</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td>GC</td>
<td>"</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td>SP</td>
<td>"</td>
<td>Poor</td>
<td>Under 5</td>
</tr>
<tr>
<td>GP</td>
<td>"</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td>SW</td>
<td>"</td>
<td>Well</td>
<td>"</td>
</tr>
<tr>
<td>GW</td>
<td>"</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td>Pt</td>
<td>Strong</td>
<td>Identify by high fibrous organic content</td>
<td></td>
</tr>
</tbody>
</table>

Fig. 2B—Materials testing report: unified soil classification system visual-manual procedure (ASTM D2488).
Material Testing Report
Reference Density Compaction Curve

<table>
<thead>
<tr>
<th>Project</th>
<th>Laboratory No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Field sample No.</td>
<td>Location</td>
</tr>
<tr>
<td>Geologic origin</td>
<td>Tested at</td>
</tr>
<tr>
<td>Classification</td>
<td>LL</td>
</tr>
<tr>
<td>Maximum particle size in test</td>
<td>Standard (ASTM D-698), method</td>
</tr>
<tr>
<td>Specific gravity (Gs):</td>
<td>No. 4</td>
</tr>
<tr>
<td>+No. 4</td>
<td></td>
</tr>
</tbody>
</table>

Remarks

Fig. 3B—Material testing report, reference density compaction curve.
Worksheet for Reference Density Compaction Data

<table>
<thead>
<tr>
<th>Project</th>
<th>Site</th>
<th>Sample No.</th>
</tr>
</thead>
</table>

Compaction Data

<table>
<thead>
<tr>
<th>1. Weight of cylinder plus moist soil</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2. Weight of cylinder</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Dry density = ([4] × 100) ÷ 100 + (6)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Moisture Determination Data

6. Moisture content = ([10] ÷ [12]) × 100	
7. Container No.	
8. Weight of container plus moist soil	
9. Weight of container plus dry soil	
11. Weight of container	

Volume of cylinder using: ASTM Standard D 698/D 1557, method

Procedure data: weight of hammer: lb, drop in., number of lifts

Completed by Date Computed by Date

Checked by Date Recorded by Date

Fig. 4B—Worksheet for reference density compaction data.
BULK SAND DENSITY DETERMINATION AND CALIBRATION OF CONE AND BASE PLATE FOR ASTM D1556

<table>
<thead>
<tr>
<th>Project Name:</th>
<th>Location:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contractor:</td>
<td>Contract No.</td>
</tr>
<tr>
<td>Material source:</td>
<td>Tested by:</td>
</tr>
</tbody>
</table>

Bulk Density of Sand

<table>
<thead>
<tr>
<th>Trial 1</th>
<th>Trial 2</th>
<th>Trial 3</th>
<th>Avg.</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) Volume of Mold, ft³ (predetermined)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(2) Initial Weight of Jar + Sand (lbs)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(3) Final Weight of Jar + Sand (lbs)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(4) Weight of Sand in Cone & Plate (lbs)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(5) Weight of Sand in Mold, lbs (2) – (3) – (4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(6) Bulk Density of Sand, lbs/ft³ (5) / (1)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Percent Difference From Average

% Difference from Avg. = [(Avg. of 3 trials – Trial #___) / Avg. of 3 Trials] x 100

(Trials should not exceed 1% difference from the average.)

Weight of Sand in Cone & Plate

<table>
<thead>
<tr>
<th>Trial 1</th>
<th>Trial 2</th>
<th>Trial 3</th>
<th>Avg.</th>
</tr>
</thead>
<tbody>
<tr>
<td>(7) Initial Weight of Jar + Sand (lbs)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(8) Final Weight of Jar + Sand (lbs)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(9) Weight of Sand in Cone and Plate (8) – (7) (lbs)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Percent Difference From Average

% Difference from Avg. = [(Avg. of 3 trials – Trial #___) / Avg. of 3 Trials] x 100

(Trials should not exceed 1% difference from the average.)

Fig. 5B—Bulk sand density determination and calibration of cone and base plate for ASTM D1556.
IN-PLACE MOISTURE-DENSITY DETERMINATION:
TEST RECORD FOR SAND CONE METHOD
ASTM D1556

Fined grained soils—less than 5% + oversize\(^1\)

<table>
<thead>
<tr>
<th>Test No.</th>
<th>Date</th>
<th>Location of test</th>
<th>Spec. requirements</th>
<th>Test results</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Station</td>
<td>Moisture range (%)</td>
<td>Moisture (%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Centerline offset</td>
<td>Mass dry density (lb/ft(^3))</td>
<td>Mass dry density (lb/ft(^3))</td>
</tr>
</tbody>
</table>

Remarks:

\(^1\)Oversize correction required based on method selected in ASTM D698 or D1557.

Indicate weight and volume units used in test.

Fig. 6B—in-place moisture-density determination: test record for sand cone method (ASTM D1556), fine-grained soils—less than 5% + oversize\(^1\).
IN-PLACE MOISTURE-DENSITY DETERMINATION:
TEST DATA FOR SAND CONE METHOD
ASTM D1556

Fine grained soils—less than 5% + oversize

Volume Determination

<table>
<thead>
<tr>
<th>Test No.</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Bulk density of sand (predetermined):</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Initial weight of sand, cone, and container:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Final weight of sand, cone, and container:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Weight of sand in plate plus cone (predetermined):</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Volume of hole = [6] ÷ [1]:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Moisture Determination

<table>
<thead>
<tr>
<th>Container No.</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample tested using:</td>
<td>direct heat</td>
<td>oven</td>
<td>microwave</td>
<td></td>
</tr>
<tr>
<td>8. Weight of moist sample and container:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Weight of dry sample and container:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Weight of container:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13. Moisture content = ([10] ÷ [12]) 100:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14. Correction for ignition:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Density Determination

<table>
<thead>
<tr>
<th>Container No.</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>16. Weight of moist sample plus container:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17. Weight of container:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18. Weight of moist sample =</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19. Wet density = [18] ÷ [7]:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20. Dry density = [18] ÷ [1 + [15]/100]:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21. Required density =</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22. Ratio1 = ([20] ÷ [21]) 100:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1Oversize correction required based on method selected in ASTM D698 or D1557.
Indicate weight and volume units used in test.

Fig. 7B—In-place moisture-density determination: test data for sand cone method (ASTM D1556) fine-grained soil—less than 5% + oversize1.

IN-PLACE MOISTURE-DENSITY DETERMINATION:
TEST RECORDS FOR THE RUBBER BALLOON METHOD
ASTM D2167
Fine-grained soils—less than 5% + no. 4 sieve

<table>
<thead>
<tr>
<th>Test No.</th>
<th>Date</th>
<th>Location of test</th>
<th>Borrow source, location, and depth</th>
<th>Material classification</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Station</td>
<td>Centerline offset</td>
<td>Elevation</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Test No.</th>
<th>Date</th>
<th>Spec. requirements (%)</th>
<th>Test results (%)</th>
<th>Curve No.</th>
<th>Wet density check</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Moisture range</td>
<td>Compaction</td>
<td>Moisture</td>
<td>Compaction</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Remarks:

Fig. 8B—In-place moisture-density determination: test records for the rubber balloon method (ASTM D2167) fine-grained soils—less than 5% + no. 4 sieve.
IN-PLACE MOISTURE-DENSITY DETERMINATION:
TEST DATA FOR THE RUBBER BALLOON METHOD
ASTM D2167
Fine-grained soils—less than 5% + no. 4 sieve

<table>
<thead>
<tr>
<th>Volume Determination</th>
<th>Test No.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 2 3 4</td>
</tr>
<tr>
<td>1. Final base reading:</td>
<td></td>
</tr>
<tr>
<td>2. Initial case reading:</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Moisture Determination</th>
<th>Container No.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 2 3 4</td>
</tr>
<tr>
<td>Sample tested using:</td>
<td></td>
</tr>
<tr>
<td>direct heat ___ oven ___ microwave ___</td>
<td></td>
</tr>
<tr>
<td>4. Weight of moist sample and container:</td>
<td></td>
</tr>
<tr>
<td>5. Weight of dry sample and container:</td>
<td></td>
</tr>
<tr>
<td>7. Weight of container:</td>
<td></td>
</tr>
<tr>
<td>9. Moisture content = ([6] ÷ [8]) 100:</td>
<td></td>
</tr>
<tr>
<td>10. Correction for ignition:</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Density Determination</th>
<th>Container No.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 2 3 4</td>
</tr>
<tr>
<td>12. Weight of moist sample plus container:</td>
<td></td>
</tr>
<tr>
<td>13. Weight of container:</td>
<td></td>
</tr>
<tr>
<td>14. Weight of moist sample:</td>
<td></td>
</tr>
<tr>
<td>15. Wet density = [14] ÷[3]</td>
<td></td>
</tr>
<tr>
<td>17. Required density:</td>
<td></td>
</tr>
<tr>
<td>18. Ratio(^1) = ([16] ÷[17]) 100:</td>
<td></td>
</tr>
</tbody>
</table>

\(^1\)Oversize correction required based on method selected in ASTM D698 or D1557. Indicate weight and volume units used in test.

Fig. 9B—In-place moisture-density determination: test data for the rubber balloon method (ASTM D2167), fine-grained soils—less than 5% + no. 4 sieve.
IN-PLACE MOISTURE-DENSITY DETERMINATION:
CALIBRATED CYLINDER METHOD TEST RECORD

Location:

Site No.:

Project Name:

Contract No.:

Contractor:

Tested by:

Computed by:

Checked by:

<table>
<thead>
<tr>
<th>Test No.</th>
<th>Date</th>
<th>Location of test</th>
<th>Borrow source, location, and depth</th>
<th>Material classification</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Station</td>
<td>Centerline offset</td>
<td>Elevation</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Test No.</th>
<th>Date</th>
<th>Spec. requirements (%)</th>
<th>Test results (%)</th>
<th>Curve No.</th>
<th>Wet density check</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Moisture range</td>
<td>Compaction</td>
<td>Moisture</td>
<td>Compaction</td>
</tr>
</tbody>
</table>

Remarks:

Fig. 10B—In-place moisture-density determination: calibrated cylinder method test record (ASTM D2937) fine-grained soils—less than 5% + no. 4 sieve.
IN-PLACE MOISTURE-DENSITY DETERMINATION:
CALIBRATED CYLINDER METHOD TEST DATA
ASTM D2937
Fine-grained soils—less than 5% + no. 4 sieve

<table>
<thead>
<tr>
<th>Volume Determination</th>
<th>Test No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Volume of cylinder (volume of hole)</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Moisture Determination</th>
<th>Test No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample tested using: direct heat ____ oven ____ microwave ____</td>
<td></td>
</tr>
<tr>
<td>2. Weight of moist sample plus container:</td>
<td></td>
</tr>
<tr>
<td>3. Weight of dry sample plus container:</td>
<td></td>
</tr>
<tr>
<td>5. Weight of container:</td>
<td></td>
</tr>
</tbody>
</table>
| 7. Moisture content = ([4] ÷ [6])*100: | | | | |%
| 8. Correction for ignition: | | | | |%

<table>
<thead>
<tr>
<th>Density Determination</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>10. Weight of moist sample plus cylinder:</td>
<td></td>
</tr>
<tr>
<td>11. Weight of cylinder:</td>
<td></td>
</tr>
<tr>
<td>13. Wet density = [12] ÷ [1]:</td>
<td></td>
</tr>
<tr>
<td>14. Fill dry density: [13] ÷ [1 + [9]/100]:</td>
<td></td>
</tr>
<tr>
<td>15. Maximum dry density:</td>
<td></td>
</tr>
<tr>
<td>16. Ratio(^1) = ([14] ÷ [15])*100:</td>
<td></td>
</tr>
</tbody>
</table>

\(^1\) Ratio of fill dry density to maximum dry density.

Indicate weight and volume units used in test.

Fig. 11B—In-place moisture-density determination: calibrated cylinder method test data (ASTM D2937), fine-grained soils—less than 5% + no. 4 sieve.
IN-PLACE MOISTURE-DENSITY DETERMINATION: TEMPLATE AND PLASTIC LINER METHOD TEST RECORD
ASTM D5030

Location: ___ Site No. ___________________________

Project Name: ___ Contractor: ___________________________

Contract No. ___________________________ Contractor: ___________________________

Tested by: ___________________________ Computed by: ___________________________ Checked by: ___________________________

<table>
<thead>
<tr>
<th>Test No.</th>
<th>Date</th>
<th>Location of test</th>
<th>Borrow source, location, and depth</th>
<th>Material classification</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Station</td>
<td>Centerline offset</td>
<td>Elevation</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Size of template: ___

<table>
<thead>
<tr>
<th>Test No.</th>
<th>Date</th>
<th>Specified requirements</th>
<th>Test results</th>
<th>Compaction (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Moisture range (%)</td>
<td>Moisture (%)</td>
<td>Density (lb/ft³)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Density (lb/ft³)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Remarks: ___

Fig. 12B—In-place moisture-density determination: template and plastic liner method test record (ASTM D5030).
IN-PLACE MOISTURE-DENSITY DETERMINATION:
TEMPLATE AND PLASTIC LINER METHOD TEST DATA
ASTM D5030

<table>
<thead>
<tr>
<th>Test No.</th>
<th>Volume Determination</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Weight of water plus container before filling template:</td>
<td>()</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Weight of water plus container after filling template:</td>
<td>()</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Weight of water plus container before filling template and hole:</td>
<td>()</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Weight of water plus container after filling template and hole:</td>
<td>()</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. Volume = [7] ÷ [62.4]:</td>
<td>()</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Test No.</th>
<th>Moisture Determination</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>9. Weight of moist sample and container:</td>
<td>()</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10. Weight of dry sample and container:</td>
<td>()</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. Weight of container:</td>
<td>()</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15. Moisture content = ([11] ÷ [14]) 100:</td>
<td>(%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16. Correction for ignition:</td>
<td>(%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Test No.</th>
<th>Density Determination</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>18. Total weight of soil removed from the hole:</td>
<td>()</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19. Total wet density = [18] ÷ [8]:</td>
<td>()</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20. Total dry density = [19] ÷ [1 + (17 ÷ 100)]:</td>
<td>()</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21. Required density =</td>
<td>()</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22. Ratio(^1) =</td>
<td>()</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(^1\) Ratio of fill dry density to maximum dry density.
Indicate weight and volume units used in test.

Fig. 13B—In-place moisture-density determination: template and plastic liner method test data (ASTM D5030).
Nuclear Compaction Test Data for ASTM D6938

<table>
<thead>
<tr>
<th>Test number</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Station</td>
<td></td>
</tr>
<tr>
<td>Offset</td>
<td></td>
</tr>
<tr>
<td>Elevation</td>
<td></td>
</tr>
<tr>
<td>Mode & depth</td>
<td></td>
</tr>
<tr>
<td>Density count</td>
<td></td>
</tr>
<tr>
<td>Wet density</td>
<td></td>
</tr>
<tr>
<td>Moisture cnt.</td>
<td></td>
</tr>
<tr>
<td>% Moisture</td>
<td></td>
</tr>
<tr>
<td>Moisture corr.</td>
<td></td>
</tr>
<tr>
<td>Dry density</td>
<td></td>
</tr>
<tr>
<td>Std. density</td>
<td></td>
</tr>
<tr>
<td>Opt. moisture</td>
<td></td>
</tr>
<tr>
<td>% Compaction</td>
<td></td>
</tr>
</tbody>
</table>

Remarks:

Fig. 14B—Nuclear compaction test data for ASTM D6938.
Moisture Content Determination
Summary Data Sheet for ASTM Methods

<table>
<thead>
<tr>
<th>Test no.</th>
<th>Date of test</th>
<th>Location of test (structure or station, offset)</th>
<th>Elevation</th>
<th>WW(^1)</th>
<th>DW(^1)</th>
<th>TW(^1)</th>
<th>Moisture content (%)(^2)</th>
<th>Tested by</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Oven D2216</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Direct heat D4959</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Microwave D4643</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Carbide D7944</td>
<td></td>
</tr>
</tbody>
</table>

1. WW = Weight of moisture sample and container
 DW = Weight of dry sample and container
 TW = Weight of container

2. Moisture content (%) = \(\frac{(WW - DW)}{(DW - TW)}\) * 100

Fig. 15B—Moisture content determination summary data sheet for ASTM methods.
ASTM D2216 | Moisture Content Oven

<table>
<thead>
<tr>
<th>Sample Number</th>
<th>Container Number</th>
<th>Date Placed in Oven</th>
<th>Mass of Container + Wet Specimen</th>
<th>Mass of Container + Dry Specimen</th>
<th>Mass of Container</th>
<th>Mass of Water</th>
<th>Mass of Dry Specimen</th>
<th>MOISTURE CONTENT (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>15</td>
<td>9/8/86</td>
<td>366.1 g</td>
<td>348.0 g</td>
<td>129.4 g</td>
<td>18.1 g</td>
<td>218.6 g</td>
<td>8.3%</td>
</tr>
<tr>
<td>2</td>
<td>20</td>
<td>9/8/86</td>
<td>374.6 g</td>
<td>342.1 g</td>
<td>118.0 g</td>
<td>32.5 g</td>
<td>224.1 g</td>
<td>14.5%</td>
</tr>
</tbody>
</table>

Fig. 16B—Moisture content oven.
<table>
<thead>
<tr>
<th>TIME IN OVEN (min)</th>
<th>TOTAL TIME IN OVEN (min)</th>
<th>MASS OF DISH SOIL (g)</th>
<th>MASS OF SOIL (g)</th>
<th>MASS OF WATER (g)</th>
<th>MOISTURE CONTENT (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>231.62</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>217.75</td>
<td>71.45</td>
<td>13.87</td>
<td>19.4</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>216.22</td>
<td>69.92</td>
<td>15.40</td>
<td>22.0</td>
</tr>
<tr>
<td>1</td>
<td>5</td>
<td>215.72</td>
<td>69.42</td>
<td>15.90</td>
<td>22.9</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>215.48</td>
<td>69.18</td>
<td>16.14</td>
<td>23.3</td>
</tr>
<tr>
<td>1</td>
<td>7</td>
<td>215.32</td>
<td>69.02</td>
<td>16.30</td>
<td>23.6</td>
</tr>
<tr>
<td>1</td>
<td>8</td>
<td>215.22</td>
<td>68.92</td>
<td>16.40</td>
<td>23.8</td>
</tr>
<tr>
<td>1</td>
<td>9</td>
<td>215.19</td>
<td>68.89</td>
<td>16.43</td>
<td>23.8</td>
</tr>
<tr>
<td>1</td>
<td>10</td>
<td>215.19</td>
<td>68.89</td>
<td>16.43</td>
<td>23.8</td>
</tr>
</tbody>
</table>

Fig. 17B—Moisture content determination summary data sheet for ASTM methods.
Example Computations

<table>
<thead>
<tr>
<th>PAN NUMBER (g)</th>
<th>113</th>
<th>REMARKS:</th>
</tr>
</thead>
<tbody>
<tr>
<td>MASS OF PAN + WET SOIL (g)</td>
<td>282.82</td>
<td></td>
</tr>
<tr>
<td>MASS OF PAN + DRY SOIL (g)</td>
<td>260.40</td>
<td></td>
</tr>
<tr>
<td>MASS OF PAN (g)</td>
<td>165.95</td>
<td></td>
</tr>
<tr>
<td>MASS OF WATER (g)</td>
<td>22.42</td>
<td></td>
</tr>
<tr>
<td>MASS OF DRY SOIL (g)</td>
<td>94.45</td>
<td></td>
</tr>
<tr>
<td>PERCENT MOISTURE (g)</td>
<td>23.7</td>
<td>\text{NOTE}: Correction may be needed for loss due to ignition of organic material.</td>
</tr>
</tbody>
</table>

Example Computations

<table>
<thead>
<tr>
<th>PAN NUMBER</th>
<th>REMARKS:</th>
</tr>
</thead>
<tbody>
<tr>
<td>MASS OF PAN + WET SOIL (g)</td>
<td></td>
</tr>
<tr>
<td>MASS OF PAN + DRY SOIL (g)</td>
<td></td>
</tr>
<tr>
<td>MASS OF PAN (g)</td>
<td></td>
</tr>
<tr>
<td>MASS OF WATER (g)</td>
<td></td>
</tr>
<tr>
<td>MASS OF DRY SOIL (g)</td>
<td></td>
</tr>
<tr>
<td>PERCENT MOISTURE (g)</td>
<td>\text{NOTE}: Correction may be needed for loss due to ignition of organic material.</td>
</tr>
</tbody>
</table>

Fig. 18B—Moisture determination using direct heat.
Example Computations

<table>
<thead>
<tr>
<th>SAMPLE NUMBER</th>
<th>NOMINAL SPECIMEN SIZE (g)</th>
<th>DIAL GAUGE READING ON CCRD</th>
<th>CORRECTED READING</th>
<th>MOISTURE CONTENT FROM CALIBRATION CURVE (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>60N</td>
<td>26</td>
<td>9.0</td>
<td>9.0</td>
<td>10.8</td>
</tr>
<tr>
<td>-12</td>
<td>26</td>
<td>10.5</td>
<td>10.5</td>
<td>12.6</td>
</tr>
<tr>
<td>-20</td>
<td>26</td>
<td>16.5</td>
<td>16.5</td>
<td>19.8</td>
</tr>
<tr>
<td>-24</td>
<td>26</td>
<td>17.7</td>
<td>17.7</td>
<td>21.2</td>
</tr>
<tr>
<td>-28</td>
<td>13 (half-size)</td>
<td>10.3</td>
<td>20.6</td>
<td>24.7</td>
</tr>
<tr>
<td>-30</td>
<td>13 (half-size)</td>
<td>11.3</td>
<td>22.6</td>
<td>27.0</td>
</tr>
<tr>
<td>60N-10B</td>
<td>26</td>
<td>9.6</td>
<td>9.6</td>
<td>11.5</td>
</tr>
<tr>
<td>-112</td>
<td>26</td>
<td>11.4</td>
<td>11.4</td>
<td>13.7</td>
</tr>
</tbody>
</table>

*If the moisture content of the full specimen exceeds the limit of the gauge on the testing equipment, a half-sized specimen is used.

**If (2) = half-size specimen, (4) = (3) x 2.
If (2) = full-size specimen, (4) = (3).
Fig. 20B—Calibration curve for determining moisture content of soils using ASTM D4944.
TEST FILL REPORT

Project Name: ___________________________ Location: ___________________________

Contract No. ___________________________ Contractor: ___________________________

Inspector: _____________________________ Date: _____________ Time: _____________

Location of Test Fill: ___________________________

Specified Lift Thickness (inches): _________ Specified Mass Density (pcf): ___________ Specified Moisture Content: _________

Material:

<table>
<thead>
<tr>
<th>Placing Method</th>
<th>Type of Fill</th>
<th>Unified Classification</th>
<th>% Passing ¾”</th>
<th>Maximum Particle Size (inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Test Fill Field Data:

<table>
<thead>
<tr>
<th>Thickness of Fill (inches)</th>
<th>Length and Width (feet)</th>
<th>In-Place Dry Density of Mass (pcf)</th>
<th>Moisture Content of Test Fill (%)</th>
<th>No. of Test</th>
<th>Test Location</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Equipment:

<table>
<thead>
<tr>
<th>Type of Compaction Equipment</th>
<th>Operational Speed (mph)</th>
<th>(Number of Passes)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Remarks: __

Signature of Inspector: ___________________________ Date: _____________

Fig. 21B—Test fill report.