A Comprehensive Review of
Lubricant Chemistry,
Technology,
Selection,
and Design

Syed Q. A. Rizvi
A Comprehensive Review of Lubricant Chemistry, Technology, Selection, and Design

Syed Q. A. Rizvi, Ph.D.

ASTM Stock Number: MNL59
Contents

Preface ... ix

Chapter 1: Lubrication Fundamentals
- Lubricant Market .. 1
- Friction and Lubrication
 - Friction .. 3
 - Lubrication .. 4
- Viscosity and Wear
 - Viscosity .. 8
 - Wear ... 18
- Types of Lubricants ... 19

Chapter 2: Mineral Base Oils
- Petroleum Composition .. 23
 - Oil Field and Refinery Chemicals .. 24
- Petroleum Refining .. 28
 - Refinery Processes ... 28
 - Refinery Process Chemicals .. 31
- Lubricant Base Stocks
 - Comparison between Naphthenic and Paraffinic Base Oils 33
 - Mineral Base Oil Manufacture .. 34
 - Hydrocarbon Analysis .. 41
- Base Oil Properties
 - Oxidation Properties .. 42
 - Effects of Sulfur and Nitrogen Compounds ... 42
 - Other Properties .. 42
 - Gas to Liquid Technology ... 45

Chapter 3: Synthetic and Biological (Natural) Base Stocks
- Synthetic Base Stocks
 - Synthetic Hydrocarbon (SHC) Polymers .. 47
 - Carboxylate Esters ... 54
 - Poly(Alkylene Glycols) .. 62
 - Other Synthetic Base Stocks .. 67
 - Petroleum Base Stocks Versus Synthetic Base Fluids ... 76
- Biological (Natural) Base Stocks
 - Melting Point/Pour Point ... 92
 - Oxidative Stability ... 94
 - Manufacture and Processing ... 95
 - Composition of Natural Oils and Structural Modifications 96

Chapter 4: Lubricant Additives
- Desirable Lubricant Properties .. 100
- Criteria For Suitable Base Stocks ... 103
- Performance Additives
 - Stabilizers/Deposit Control Agents .. 104
 - Oxidation Inhibitors .. 105
 - Dispersants .. 110
 - Detergents ... 121
 - Stabilizers/Deposit Control Agents .. 137
Chapter 5: Combustion Engine Lubricants

Types Of Engines And Mode Of Their Operation ... 213

Lubricant Specifications And Classifications ... 216

Trends Impacting the New Performance Standards ... 217

U.S. Standards ... 218

European Standards .. 222

Japanese Standards ... 229

Indian Standards .. 229

Engine Oil Classification Based on End-use ... 229

Lubricant-related Causes of Engine Malfunction .. 246

Rating of Engine Parts ... 247

Formulating Engine Oils .. 249

Fuel Economy .. 256

Emissions Control .. 256

Extended Service Intervals (Extended Oil Drains) .. 260

Formulation Examples ... 268

Commercial Railroad Diesel Engine Oil Concentrates 270

Chapter 6: Emissions in an Internal Combustion Engine................................... 273

Exhaust Emissions Of Concern ... 274

Unburned Hydrocarbons (HC) ... 276

Carbon Monoxide (CO) ... 277

Nitrogen Oxides (NOx) ... 277

Ground Level Ozone ... 278

Sulfur Dioxide .. 278

Aldehydes ... 278

Particulate Matter (PM) ... 278

Odor ... 278

General Engine Performance Considerations .. 279

Emissions Standards .. 281

U.S. Emissions Standards .. 281

Emissions Standards—European Union .. 293

Gasoline Engine Emissions Control ... 296

Gasoline Properties versus Emissions ... 296

Formulated Gasoline ... 299

Reformulated Gasolines (RFGs) ... 299

Effect of Engine Design and Operating Variables on Emissions 300

Diesel Engine Emissions Control ... 305

Diesel Combustion ... 307

Diesel Fuel Properties ... 308

PuriNOx™ Technology ... 311

Diesel Engine Design and Operating Variables ... 311

Emissions Control via After-treatment ... 313

Emissions Control via Engine Design Changes ... 314

Fuel Additives ... 322

Deposit Formation ... 322

Deposit Control Additives/Cleanliness Agents ... 325

Fluidizers ... 327

Anti-icing Agents ... 327

Octane Improvers ... 327

Lubricity Agents ... 328

Cetane Improvers (Diesel Ignition Improvers) .. 329

Combustion Modifiers/Smoke Suppressants ... 330

Low-temperature Operability Additives ... 330

Flow Improvers/Wax Modifiers ... 330
Chapter 11: Metalworking and Machining Fluids

Lubrication

- Viscosity

Metalworking Fluid Classification

- Classification Based on Base Fluid
- Classification Based on End-use

Fluid Composition

- Base Fluid
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Additives</td>
<td>519</td>
</tr>
<tr>
<td></td>
<td>Metal Working Fluid Formulations and Testing</td>
<td>529</td>
</tr>
<tr>
<td></td>
<td>Formulation Examples</td>
<td>529</td>
</tr>
<tr>
<td></td>
<td>Fluid-based Formulations</td>
<td>529</td>
</tr>
<tr>
<td></td>
<td>Application-based Formulations</td>
<td>529</td>
</tr>
<tr>
<td></td>
<td>Chapter 12: Lubricant Testing</td>
<td>531</td>
</tr>
<tr>
<td></td>
<td>Introduction Of A New Additive or a Product</td>
<td>531</td>
</tr>
<tr>
<td></td>
<td>The Approval Process</td>
<td>531</td>
</tr>
<tr>
<td></td>
<td>Physical and Analytical Tests</td>
<td>532</td>
</tr>
<tr>
<td></td>
<td>Mechanical or Tribological Tests</td>
<td>554</td>
</tr>
<tr>
<td></td>
<td>In-service Lubricant Analysis</td>
<td>558</td>
</tr>
<tr>
<td></td>
<td>Full-scale Testing</td>
<td>573</td>
</tr>
<tr>
<td></td>
<td>Elements of a Quality Test</td>
<td>575</td>
</tr>
<tr>
<td></td>
<td>Chapter 13: Lubricants and the Environment</td>
<td>579</td>
</tr>
<tr>
<td></td>
<td>Lubricant Deterioration In Service</td>
<td>579</td>
</tr>
<tr>
<td></td>
<td>Used Oil—Environmental Considerations</td>
<td>583</td>
</tr>
<tr>
<td></td>
<td>Lubricant Conservation</td>
<td>585</td>
</tr>
<tr>
<td></td>
<td>Used Oil Recycling</td>
<td>587</td>
</tr>
<tr>
<td></td>
<td>Oil Reconditioning</td>
<td>588</td>
</tr>
<tr>
<td></td>
<td>Lubricants And The Environment</td>
<td>591</td>
</tr>
<tr>
<td></td>
<td>Environmental Compatibility</td>
<td>591</td>
</tr>
<tr>
<td></td>
<td>Need for Standardized Testing</td>
<td>593</td>
</tr>
<tr>
<td></td>
<td>Biodegradability</td>
<td>595</td>
</tr>
<tr>
<td></td>
<td>Toxicity</td>
<td>598</td>
</tr>
<tr>
<td></td>
<td>Environmentally Acceptable Lubricants</td>
<td>599</td>
</tr>
<tr>
<td></td>
<td>Disposal Issues</td>
<td>599</td>
</tr>
<tr>
<td></td>
<td>Permissions</td>
<td>601</td>
</tr>
<tr>
<td></td>
<td>Appendix</td>
<td>603</td>
</tr>
<tr>
<td></td>
<td>Subject Index</td>
<td>629</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>635</td>
</tr>
</tbody>
</table>
Preface

This book provides an overview of the technology of lubricants and its use in devising new ones. During my research, I found lubricant literature, both academic and commercial, to be rich with respect to information, with the Worldwide Web being an excellent source. The monographs pertaining to lubricant technology and tribology that I found most useful are listed below.

The present manuscript differs from these in that it is written both from a chemist’s perspective and a lubrication engineer’s perspective and therefore places equal emphasis on the chemistry and the formulation of lubricants. In addition, it includes additive technology that is used in petroleum exploration, refining, and fuels.

The finalizing of this manuscript would not have been possible without the help of many of my colleagues, at Lubrizol and elsewhere, my wife Marie, and my children Sophia and Ali. My colleagues provided me the technical advice and my family provided the needed moral support. In addition, I am indebted to Marie and Sophia for typing portions of the manuscript and reviewing the document for content, legibility, and grammar. I also wish to express my gratitude to the ASTM publications staff including Monica Siperko, most of who worked behind the scenes to make this publication possible. Above all, I am indebted to Kathy Dernoga of ASTM International who facilitated the completion of this book by providing continuous support.

Syed Q. Rizvi
January 2009
Dr. Syed Q. A. Rizvi holds a Ph.D. in chemistry, an M.B.A. in marketing, and an M.A. in economics. He has 29 years of research and development experience pertaining to the development of lubricant additives, their formulations, and testing. During his career as a lubricant technologist Dr. Rizvi has authored many technical papers and made numerous presentations at both national and international technical and commercial organizations. Dr. Rizvi is the recipient of 14 U.S. Patents, over 26 foreign patents, and has published 43 scientific and technical articles. Dr. Rizvi is listed in Who’s Who in Science and Engineering, Who’s Who in the Midwest, and Who’s Who in America and is an active member of the American Chemical Society.