Distillation and Vapor Pressure Measurement in Petroleum Products

Rey G. Montemayor
Editor
Distillation and Vapor Pressure Measurement in Petroleum Products

Rey G. Montemayor, editor
Foreword

THIS PUBLICATION, Manual on *Distillation and Vapor Pressure Measurement in Petroleum Products*, was sponsored by ASTM International Committee D02 on Petroleum Products and Lubricants, and edited by Rey G. Montemayor, Imperial Oil Ltd., Sarnia, Ontario, Canada. This publication is Manual 51 of ASTM International’s Manual Series.
Preface

ASTM International has been developing standards that is widely used world-wide since 1898. The technical content and quality of these standards are excellent, and these are largely due to the thousands of technical experts who volunteer and devote considerable amount of their time and effort in the standards development activities.

In ASTM Committee D02 on Petroleum Products and Lubricants, one of the largest ASTM committees, a tremendous amount of activity is spent in developing new test methods, and revising existing test methods to meet ever increasing demands for high quality standards in the industry. ASTM D02 is blessed with a considerable number of technical experts who, in one way or another, have contributed tremendously to standards development related to petroleum products and lubricants. This manual is the result of the selfless effort, time, dedication, and considerable expertise of some of these experts.
Acknowledgment

This manual would not have been possible without the help and contribution from a number of individuals. I would like to sincerely thank the authors of the different chapters who have been very responsive in submitting their manuscripts, and who have been very patient in waiting for all the publication protocols to be satisfied. Their time, effort, dedication and expertise have proven to be invaluable in the preparation of this manual. To the anonymous reviewers who have provided very helpful and constructive suggestions on their review of the content of the various chapters thereby making them easier to understand and minimize any potential misunderstanding, I would like to extend my heartfelt gratitude. Special thanks to a number of ASTM Staff who are instrumental in bringing this work to become a reality: to Lisa Drennen of Committee D02 who provided a number of ASTM historical documents; and to Monica Siperko and Kathy Dernoga of the ASTM Publications Department who provided support, guidance, and encouragement throughout the preparation of the various chapter manuscripts. I wish to thank Imperial Oil Ltd., for its continued support in the time and effort spent with this work, and other ASTM International activities. I would also like to acknowledge ASTM International and Committee D02 for sponsoring this work. And last, but not least, to Susanna, my sincere thanks for being so understanding and supportive of my involvement with ASTM International.

Rey G. Montemayor
Imperial Oil Ltd.
Contents

Preface ... v
Acknowledgment ... vi

Chapter 1: Introduction and a Brief Historical Background, R. G. Montemayor 1
Coverage Of The Manual ... 1
Distillation Measurement .. 1
Vapor Pressure Measurement .. 2
Simulated Distillation Measurement .. 2
A Bit Of History .. 2
Distillation Measurement at Atmospheric Pressure ... 2
Distillation Measurement at Reduced Pressure ... 3
Simulated Distillation ... 4
Vapor Pressure Measurement .. 5

Chapter 2: Distillation Measurement at Atmospheric Pressure, R. G. Montemayor 6
ASTM D86—Distillation At Atmospheric Pressure ... 6
Scope .. 6
Terminology .. 6
Summary of the Method .. 6
Significance and Use ... 7
Sampling .. 7
Group Characteristic .. 7
Sample Storage and Conditioning ... 8
Wet Samples .. 8
Manual and Automated D86 Apparatus .. 8
Distillation Flask ... 9
Flask Support Hole Dimension ... 9
Condenser and Cooling Systems .. 9
Heat Source and Heat Control ... 10
Temperature Measurement Device .. 13
Calibration .. 13
Temperature Measurement Device .. 13
Receiving Cylinder and Level Follower .. 14
Barometer or Pressure Measuring Device ... 14
Calculations .. 15
Correcting Temperature Readings to 101.3 kPa (760 mm Hg) Pressure Device 15
Sample Calculation .. 15
Percent Total Recovery and Percent Loss ... 16
Corrected Percent Loss and Corrected Percent Recovery 16
Percent Evaporated and Percent Recovered .. 16
Temperature Readings at Prescribed Percent Evaporated 16
Percent Evaporated or Percent Recovered at a Prescribed Temperature Reading 17
Slope or Rate of Change of Temperature ... 18
Calculation of Precision ... 18
Report ... 19
Precision ... 19
Bias .. 19

ASTM D850 And D1078: Distillation At Atmospheric Pressure For Aromatic Materials
And Volatile Organic Solvents ... 20
ASTM D850 ... 20
ASTM D1078 ... 20
Comparison Of ASTM D86, D850, And D1078 .. 22
Potential Troubleshooting Guide .. 22
Safety ... 23
Statistical Quality Control ... 24
Cross-Reference Of Distillation At Atmospheric Pressure Test Methods 24
New Test Methods For Distillation At Atmospheric Pressure 25
Micro Method .. 25
Mini Method .. 25
ASTM D402 Distillation Of Cut-Back Asphalitic Product 25
Chapter 3: Distillation Measurement at Reduced Pressure, R. M. Daane

Distillation Of Crude Petroleum By ASTM D2892

Field Of Application

Introduction

Important Parameters

Temperature

Distillation Pressure

Separation Sharpness (Efficiency)

Other Factors Affecting Results

Precision

Summary

ASTM D5236

Introduction

Field of Application

Important Parameters

Temperature

Distillation Pressure

Separation Sharpness

Other Factors

Boiling Point, TBP, and AET

Comparison of ASTM D5236 and D2892

Precision

ASTM D1160

Introduction

Field of Application

Important Parameters

Temperature

Distillation Pressure

Volume Measurement

Precision

Accuracy

Closing Remarks

ASTM D323—Vapor Pressure Measurement By The Reid Method [2]

Scope

Summary and Significance of the Test Method

Apparatus

Sampling

Calibration

Report, Precision, and Bias

ASTM D4953—Vapor Pressure By The Dry Reid Method [5]

Scope

Summary of the Test Method, Significance and Use, and Apparatus

Precision and Bias

ASTM D4953—Vapor Pressure By The Dry Reid Method [5]
ASTM D5191—Vapor Pressure of Petroleum Products (Mini Method) [5] ... 52
 Scope ... 52
 Summary and Significance of the Test Method ... 53
 Apparatus .. 53
 Sampling and Sample Handling ... 53
 Calculation .. 54
 Precision and Bias .. 55

 Scope ... 56
 Summary and Significance of the Test Method ... 56
 Apparatus .. 57
 Sampling ... 57
 Calculation .. 57
 Precision and Bias .. 57

ASTM D5482—Vapor Pressure of Petroleum Products (Mini Method-Atmospheric) [5] 57
 Scope ... 57
 Summary and Significance of the Test Method ... 57
 Apparatus .. 57
 Precision and Bias .. 57

ASTM D6377—Vapor Pressure of Crude Oil: VPCR (Expansion Method) [9] 58
 Scope ... 58
 Terminology .. 58
 Summary and Significance of the Test Method ... 58
 Apparatus and Calibration ... 58
 Sampling ... 58
 Report, Precision, and Bias ... 59

ASTM D6378—Vapor Pressure (VP) of Petroleum Products, Hydrocarbons, and Hydrocarbon-Oxygenate Mixtures (Triple Expansion Method) [9] 59
 Scope ... 59
 Summary and Significance of the Test Method ... 59
 Apparatus and Calibration ... 59
 Sampling and Sample Handling ... 60
 Calculation .. 60
 Proposed Revision to D6378 Being Considered ... 60

 Scope ... 61
 Summary and Significance of the Test Method ... 61
 Apparatus .. 61
 Sampling and Calculation ... 62
 Report, Precision, and Bias ... 62

 Scope ... 62
 Summary and Significance of the Test Method ... 62
 Apparatus and Calibration ... 63
 Calculation, Report, Precision, and Bias .. 63

Vapor-Liquid Ratio Temperature Measurements .. 63
 Scope ... 63
 Summary and Significance of the Test Method ... 63
 Critical Apparatus, Calibration, Sampling, and Sample Handling 64
 Calculation, Report, Precision, and Bias .. 64

ASTM D5188—Vapor-Liquid Ratio Temperature of Fuels (Evacuated Chamber Method) 65
 Scope ... 65
 Summary and Significance of the Test Method ... 65
 Apparatus, Calibration, Sampling, and Sample Handling ... 65
 Calculation, Report, Precision, and Bias .. 65

Other Vapor Pressure Measurements ... 65
ASTM E1194—Vapor Pressure [12] ... 66
ASTM E1719—Vapor Pressure of Liquids by Ebulliometry [13] .. 66

Comparison Of Vapor Pressure And Vapor/Liquid Ratio Test Methods 66
Dr. Rey G. Montemayor, Ph.D., is presently the Chief Chemist of the Quality Assurance Laboratory of the Products and Chemicals Division of Imperial Oil Ltd. in Sarnia, Ontario Canada. He received a B.S. in Chemistry from the University of the Philippines, and an M.S. and a Ph.D. in Inorganic-Analytical Chemistry from the University of Michigan.

At Imperial Oil Ltd., Dr. Montemayor focuses on analytical chemistry related to the quality assurance and testing of petroleum, lubricants, and other petrochemical products. He has been part of the staff since 1979 and has been quality control coordinator and technical specialist for various product lines. Prior to his position at Imperial Oil Ltd., Dr. Montemayor held academic positions with the University of the Philippines, the University of Utah, and the University of Guelph.

He is an active member of a number of the following ASTM Committees: D01 on Paint and Related Coatings, Materials, and Applications; D02 on Petroleum Products and Lubricants; and D16 on Aromatic Hydrocarbons and Related Chemicals. He is currently the Chairman of Subcommittee D01.35 on Solvents, Plasticizers, and Chemical Intermediates, and Chairman of Subcommittee D02.08 on Volatility. He was also the former Chairman and Secretary of the ASTM S15 Coordinating Committee on Flash Point.

Dr. Montemayor has been the recipient of a number of ASTM International awards, including the ASTM International Award of Merit in 2004 for his contribution to standards development in Committee D02. He has received Awards of Appreciation and Awards of Excellence from Committees D01, D02, and S15. His awards from D01 include the Henry A. Gardner Subcommittee Chairman of the Year in 2000 and 2006. He served on the ASTM Board of Directors from 2002 to 2004 and was the Chairman of the Finance and Audit Committee of the ASTM Board in 2005.

He has authored a number of technical publications in the Journal of Chemical Education, the Journal of Inorganic Chemistry, the Journal of the American Chemical Society, and the Journal of Testing and Evaluation. He has written chapters in a number of ASTM publications, including MNL. 1-7th, Significance of Tests for Petroleum Products; MNL 37, Fuels and Lubricants Handbook; and MNL. 17-15th, Paint and Coatings Manual.

He was formerly affiliated with the American Chemical Society, Sigma Xi Society, Technical Committee 35 on Paint and Related Materials of the International Organization for Standardization (ISO), and the Standards Council of Canada.