Subject Index

A

Aerospace material, differences from structural steels, 5
ASME code, 46–47
ASTM E 399, 5–6
ASTM E 647, 26
ASTM E 1820, 22
ASTM E 1921, 2, 6, 10–11, 13, 15, 20, 22–24, 26–27, 31, 35, 38–40, 48

B

Bend bar fixtures, 22, 24
Bend bar specimens, 18–20

C

Calibration, checking, 28–29
Charpy specimen, pre-cracked, 42–43
Charpy V curve, reference temperatures, 34
Multi-temperature determination, 59
offset constants, 33
Charpy V upper shelf energy, low, 48
Cleavage fracture, 6
Clevis design, 22–23
Pre-cracking, 26
Clip gages, 18, 20, 22–25
Commercial applications, Master Curve, 47–48
Compact specimen fixtures, 22
Compact specimens, 18–21
Crack growth, slow-stable
Klc limit, 16–17
Multi-temperature reference temperature determination, 59

Cryogenic cooling chambers, 23–25
Cumulative probability method, tolerance bounds, 39–40
Cumulative failure probability distribution, 7–8

D

Data censoring, using maximum likelihood method, 56–57
Design application problems, 48–49
Disk-shaped compact specimens, 18–20
Displacement gage, 18
Ductile tearing, 5
Ductile-to-brittle transition temperature, 5

E

Elastic-plastic stress intensity factor, fracture toughness and, 8

F

Flaw geometry, 49
Fracture mechanics
application to round robin data, 10–11
concept discovery, 6–8
engineering adaptation, 8–10
Fracture toughness
crack mouth data, 32
elastic-plastic stress intensity factor and, 8
lower bound curves, 5, 12
specimen size effect, 8
versus temperature, 5–6

Copyright® 2005 by ASTM International www.astm.org
Greek symbols, 4

Historical aspect, 5–6

Japan Society for the Promotion of Science, 10
J-integral, 5–6
 calculation, 30
 elastic component, 30–31
 plastic component, 30

K

K_{jc}
 data duplication needs, 15
 limit value, 28
 side-grooving effect, 27
 slow-stable crack growth limit, 16–17
 specimen size requirements, 15–16

M

Master Curve, 11–12
 application to other grades of steel, 48
 commercial applications, 47–48
 design application problems, 48–49
 example applications, 46
 fit to data, 57–58
 median versus scale parameter, 12–13
 supporting evidence, 13–14
 units of measure, 32
 use of tolerance bounds, 46–47
Materials Property Council, 10
Maximum likelihood method
 data censoring using, 56–57
 random homogeneity, 44–45
Median, versus scale parameter, 12–13
Monte Carlo simulations, 15–16
Multi-temperature method, reference temperature determination, 36–37

N

Nomenclature, 2–4

"Over-the-top" clip gage, 18, 20

Pre-cracked Charpy specimen, 42–43
Pre-cracking, 26
 in servo-hydraulic machines, 28

Rand homogeneity, maximum likelihood estimate, 44–45
Razor blades, on specimens, 18, 20
Reference temperature
 calculation, 60
 Charpy V curve, 34
 determination, 36–37
 margin adjustment, 40–41
 multi-temperature determination, 59–61
 offset constants, Charpy V curve, 33
Round robin, 10–11

S

Scale parameter
 determination, 55–56
 equations, 35
 versus median, 12–13
 testing at test temperature, 33–34
Side-grooving, 26–27
Single temperature method, reference temperature determination, 36
SINTAP system 3 analysis, 44–45
Specimens, 18–21
 pre-cracking, 26
 side-grooving, 26–27
Specimen size, 4
 K_{jc} requirements, 15–16
Specimen size effect, 6
 fracture toughness, 8
Standard deviation method, tolerance bounds, 38–39
Steels
 application to other grades, 48
 macroscopically inhomogeneous, 42-43
 structural, differences from aerospace material, 5
Stress analysis, 49
Stress intensity factors, 1

T
Test equipment, 22-25
Test practices, 28-29
Thermocouple wires, 24-25
Tolerance bounds, 38-41
 calculation, 62-64
 coefficients, 39
 cumulative probability method, 39-40
 margin adjustment, 40-41, 62, 64
standard deviation method, 38-39
 use in Master Curve, 46-47

U
USNRC NUREG/CR-5504, 1

W
Weakest-link based model, 10
Weibull cumulative probability, 39
Weibull fitting of data, 55-57
Weibull model
 description, 55
 three-parameter, 9
 two-parameter, 7
Weibull slopes, 10-11
 best fit, 9
Welding Institute round robin, 43