Subject Index

65% nitric acid test, 250–251

A
Abbreviations, ASTM, 14–16
AC impedance, 788–790
Accelerated tests, 743, 766
Acetic acid salt spray (fog) tests, 132
Acidified synthetic sea water (fog) test, 134
Acidity
aluminum and aluminum alloys, 550
lead and lead alloys, 534
magnesium and magnesium alloys, 541
acidizing treatments, 814
Acids
copper and copper alloys, 568
stainless steels, 587–588
Acronyms, 12–13
Additives, concrete, 406, 409
Aerations, soils, 390, 392
Aerospace, hydrogen damage, 329–331
Agitated tests, 148
Air, dew point, 38–42
Air port composite tube corrosion, 804–805
Aircraft,
see Commercial aircraft
Alkalinity
aluminum and aluminum alloys, 550
lead and lead alloys, 534
magnesium and magnesium alloys, 541
stainless steels, 587
Aluminum and aluminum alloys, 547–556
acidity/alkalinity, 550
addition, stainless steels, 585
alloying effect, 547
anodized, single frequency impedance test, 126
compatibility with chemicals, 551
crevice corrosion, 551
environmental factors, 550–551
exfoliation corrosion, 266–267, 552, 554
filiform corrosion, 553, 555–556
galvanic corrosion, 551, 555
heat treatment evaluation, commercial aircraft, 689
hydrogen role, 549
intergranular corrosion, 552, 554
ions, 550
liquid metals, 551
mechanical treatments, 548–549
metal-matrix composites, 637–644
amina effect, 641–642
boron effect, 637–638
effect of diffusion bonds and microstructural contaminants, 642
graphite effect, 638–639
mica effect, 642
reinforcement constituent effect, 642–644
Aluminum brass, 566
Aluminum bronzes, 567
Ammonia test, copper and copper alloys, 569–570
Anaerobic bacteria, 391
Anions, 390
Anode/cathode area ratio, galvanic corrosion, 235
Anodic protection, chemical pulping, 802
Anodic reaction, 391
Anodized aluminum corrosion test, 125
ANUSNEA 250, 767
API standards, 781, 851
Aqueous corrosion testing, 526, 593–595
Aqueous environments, steels, 559
Aqueous media, titanium, passivity, 599–601
Aqueous phase corrosion, oil refining, 820–821
Artificial intelligence, applications, 99–102
ASME B31G, 851
ASTM A 143, 853
ASTM A 239, 527–528
ASTM A 242, 558, 562–563
ASTM A 262, 64, 71, 125, 140, 143–144, 244, 247, 250, 252–253, 255, 261–262, 386, 505, 582, 586, 588, 669, 735–736, 771–773, 802, 851
ASTM A 370, 73, 815
ASTM A 380, 345–346, 585, 668, 776, 855
ASTM A 393, 251
ASTM A 514, 558
ASTM A 517, 558
ASTM A 572, 558
ASTM A 588, 558, 562–563
ASTM A 606, 558
ASTM A 708, 251
ASTM A 767, 410
ASTM A 775, 409
ASTM A 825, 558, 562
ASTM A 876, 563
ASTM A 884, 410
ASTM A 923, 586, 774, 803
ASTM A 967, 585, 776
ASTM B 29, 532
ASTM B 69, 526
ASTM B 76, 200–201, 445, 855
ASTM B 78, 201, 445, 855
ASTM B 80, 538
ASTM B 90, 538
ASTM B 93, 538
ASTM B 94, 538
ASTM B 107, 538
ASTM B 154, 569, 855
ASTM B 162, 134
ASTM B 201, 526–528
ASTM B 240, 526
ASTM B 275, 537
ASTM B 287, 633–634
ASTM B 380, 132, 134, 528, 571, 660, 680, 684, 855
ASTM B 418, 525
ASTM B 456, 684
ASTM B 457, 126, 635, 684, 854
ASTM B 488, 758
ASTM B 499, 527–528
ASTM B 537, 138, 168, 660, 679, 853
ASTM B 538, 125, 633, 684
ASTM B 545, 758, 855
ASTM B 568, 527–528
ASTM B 577, 853

Copyright © 2005 by ASTM International
www.astm.org
outdoor exposure, 165–166
powder metallurgy materials, 665
principles, 159–163
program development, 163
site monitoring/evaluation of environment, 166–167
specimens, 163–165
types of exposures, 159
Atmospheric environment classification, 161–162, 343
highways, tunnels, and bridges, 707–708, 712
service test, 199
steels, 559
Atmospheric gaseous pollutants, design guidelines, 350
Atmospheric particulate matter, design guidelines, 350
Auger electron spectroscopy, 77–79
Automobiles, 673–684
AWWA standards, 851
Automotive fasteners, 331
Autoclaves, 801–802
Automobiles, 673–684
automatic transmission fluid, 676
cabinet tests, 680
controlling corrosion, 677–679
corrosion mechanisms, 676–677
cyclic tests, 680–681
design improvements, 673
electrical and electronic systems, 679
electrochemical tests, 679–680
gasoline and coolants, 676
environment, 673–676
external exposure, 674–675
field tests, external exposure, 681–682
immersion tests, 679–680
internal combustion exposure, 675
internal functional liquids, 675–676
laboratory tests, external exposure, 678
liquid passage and reservoirs, 678
materials, 673
metallic materials, 674
processing, 673
test methods, 679–684
testing, 682–684
Automotive fasteners, 331
Automotive radiators, accelerated corrosion testing, 576–577
AWWA standards, 851
Axial heating rate, liquid metals, 470

B

Bacteria
corrosive, 176
pipeline, 698
Bar steel, 562–563
Barnacle electrode, 123, 328
Barsquin equation, 304
Bent-beam test, oil and gas production, 815
Beverage, see Food and beverage
BI 103–01, 132, 135
BI 104–01, 132
BI 104–02, 132
BI-123–01, 132
Bias effects, indoor atmospheres, 355
Bimetallic couples, pipeline, 700
Biofilms, 367, 509–510
Biofouling, copper and copper alloys, 568
Biological activity test, soils, 401
Biological factors, freshwater, 381
Biological organisms, seawater, 366
Black liquor system corrosion, 803
Beach plant, 798–800
Block designs, 55–56
BNF jet test, copper and copper alloys, 573
Bode phase angle and magnitude plots, 113, 127
Boron, effect on metal-matrix composites, 637–638, 644
Bottom up approach, 92
Brasso and Wamiento plots, 91–93
BQ 105–01, 132
Brasses, 565–566
Breakaway corrosion, high-temperature corrosion, 196
Bridges, see Highways, tunnels, and bridges
British Std 1036, 683
Brownstock and black liquor system corrosion, 803
BSI Code of Practice 7361 Part 1, 525
BI-123–01, 132
C
C-cring test, oil and gas production, 815
Cabinet corrosion tests, 131–138
corrosion, 673–676
acetic acid salt spray (fog) tests, 132
acetylated synthetic seawater (fog) test, 134
automobiles, 680
CASS test, 134
corrodokote test, 134
corrosive gas tests, 135
cyclic acidified salt fog test, 133–134
cyclic corrosion tests, 136–138
cyclic salt fog/UV exposure, 134
dilute electrolyte cyclic fog/dry test, 134
evaluation of results, 137–138
filiform tests, 135
humidity tests, 134–135
mixed flowing gas, 136
salt spray (fog) test, 131–132
salt/SO 2 spray (fog) test, 134
acidified synthetic sea water (fog) test, 136
humidity tests, 134–135
mixed flowing gas, 136
salt spray (fog) test, 131–132
salu/SQ, spray (fog) test, 134
Cables, telecommunications, 762–763
Cadmium, as metallic coatings, 623
Capillary water, 389
Carbon steel, 376, 716
Carbonates, in seawater, 366
Carbonation, 406
Carbonation, concrete, 406
Carbonization, 198, 201, 437–440
Case-based reasoning, 101–102
CASS test, 134, 571
Cast iron, pipeline, 696
Catastrophic corrosion, high-temperature corrosion, 196
Cathodic protection, 394
cement, 410
highways, tunnels, and bridges, 710
pier and pipes, 719
pipeline, 699
Cationic reaction, 392
Cations, 390
Cavitation, 274, 276
copper and copper alloys, 573
freshwater, 386
seawater, 370
CCT, 132
Ceramics, molten salts, 461–463
Chemical cleaning procedures, 43–45
Chemical etching, 69–70
Chemical processing, 779–793
computational process chemistry effects, 780–781
computerized test database, 793
corrosion, 792–793
corrosion, 784–787
corrosion, 784–787
corrosion, 783–784
linear polarization, 787–789
materials selection, 779–780
pilot plant testing, 784
probe testing, 787–788
specialized testing, 788–792
test location, 782–783
Chemical pulping, 800–803
Chemical vapor deposition, 621
Chloride, ingress into concrete, 406
Chromium and chromium alloys, as metallic coatings, 623
Chromium carbide precipitates, 249
Chromium–iron alloys, phase formation, 73
Chronopotentiometry, electrodedeposited coatings, 661
Chrysler LP 4611–117, 681
Chrysler Std MS-4338D, 683
CLIMAT test, 347
Close interval survey, pipeline, 703
Closures, telecommunications, 762–763
CO 2 corrosion, modeling, 100
Coal ash corrosion, 442
Coating degradation, 788–789
Coatings
AC impedance, 788–790
aluminum and aluminum alloys, 556
highways, tunnels, and bridges, 710
magnesium and magnesium alloys, 545
in oil and gas production, 814
pier and pipe, 719
pipeline, 698
see also Electrodedeposited coatings; Metallic coatings on steel; Nonmetallic coatings; Protective coatings and films
Cobalt-base alloys, 591–597
aqueous corrosion testing, 593–595
compositions, 591
galling test, 596
hot corrosion testing, 597
investment castings, 595
microstructures, 592–593
oxidation testing, 597
stress corrosion cracking, 593–594
wear testing, 595–597
Coefficients of thermal expansion, 36
Coffin-Manson equation, 304
Commercial aircraft, 687–692
aluminum alloy/hot-tent evaluation, 689
controlling corrosion, 688
high-strength steel testing, 689
hydrogen damage, 329–331
in-service monitoring, 688
inspection, 688
materials selection, 689
paint evaluation, 689, 691
problem areas, 689
service environments, 687–688
surface finishes evaluation, 691
Composite materials, pier and pipe, 716–717
Composite tube corrosion and cracking, 805
Computer modeling, galvanic corrosion, 239–240, 242
define goals and objectives, 49-51
design, 51-56
designing experiments, 54-56
determining number of observations, 53
develop test protocol, 56
engineering, 56-57
factorial designs, 55
hydrocarbon gas systems, 430
industrial chemicals, 422-423
modifications, 57
probability sampling, 53
produced water systems, 430-431
randomization, 53-55
seawater, 371-374
statistical basis, 52-53
statistical modeling, 53-54
statistical tests, 56
Corrosion yard instrumentation, 345
Corrosive gas tests, 135, 355-356, 360
Cyclic potentiodynamic polarization, 61, 62
Curve fitting, 53-54
Current density, 59-61
CUNA 07901, 682
Crude oil, 427-429
Cross contamination effects, 784
CUNA 07901, 682
dimensional, 59-61
corrosion fatigue, 312-316
Cracking, environmental, 122-125
corrosion fatigue, 312-316
Crevvice corrosion, 221-229, 791
corrosion fatigue, 312-316
critical potentials, measurement, 228-229
corrosion fatigue, 312-316
depassivation pH, measurement, 229
corrosion fatigue, 312-316
electrochemical critical temperature, 227-228
corrosion fatigue, 312-316
electrochemical tests, 226-229
corrosion fatigue, 312-316
freshwater, 178, 384
corrosion fatigue, 312-316
industrial chemicals, 421
corrosion fatigue, 312-316
mechanisms, 221-222
corrosion fatigue, 312-316
medical and dental materials, 840
corrosion fatigue, 312-316
metals processing, 774-775
corrosion fatigue, 312-316
nickel and nickel alloys, 583
corrosion fatigue, 312-316
non-electrochemical tests, 222, 226
corrosion fatigue, 312-316
seawater, 171, 369
corrosion fatigue, 312-316
stainless steels, 589
corrosion fatigue, 312-316
steels, 561
corrosion fatigue, 312-316
titanium, 604-605
corrosion fatigue, 312-316
Critical potentials, measurement, 228-229
corrosion fatigue, 312-316
Critical temperature tests, 224-225
corrosion fatigue, 312-316
Cross contamination effects, 784
corrosion fatigue, 312-316
Crude oil, 427-429
corrosion fatigue, 312-316
CUNA 07901, 682
corrosion fatigue, 312-316
Current density, 59-61
corrosion fatigue, 312-316
Curve fitting, 53-54
corrosion fatigue, 312-316
Cyclic acidified salt fog test, 133-134
corrosion fatigue, 312-316
Cyclic corrosion tests, 136-138
corrosion fatigue, 312-316
Cyclic polarisation, electrochemical tests, 215
corrosion fatigue, 312-316
Cyclic potentiodynamic polarization, 61, 118-119, 791
corrosion fatigue, 312-316
Cyclic salt fog/UV exposure, 134
corrosion fatigue, 316
Cyclic strain-induced dissolution, 627
corrosion fatigue, 316
Cyclic tests, metalic coatings on steel, 627
corrosion fatigue, 316
Docks, see Piers and docks
corrosion fatigue, 316
Double-cantilever beam test, 336, 815
corrosion fatigue, 316
Dual cell techniques, microbiological effects, 516
corrosion fatigue, 316
Ductile iron, pipeline, 696
corrosion fatigue, 316
Ductility, hydrogen damage, 325-326
corrosion fatigue, 316
Duplex stainless steels, 587
corrosion fatigue, 316
Dust, military aircraft and equipment, 695
corrosion fatigue, 316
Dynamic testing, stress corrosion cracking, 298
corrosion fatigue, 316
E
EC test, electrodeposited coatings, 661
corrosion fatigue, 316
Economizer, 805
corrosion fatigue, 316
EIA 364-B, 767
corrosion fatigue, 316
EIA RS-364-50, 353, 356, 361
corrosion fatigue, 316
Electrochemical potentiokinetic reactivation tests, simplified, 261
corrosion fatigue, 316
Electric heater wire tests, high-temperature corrosion, 200
corrosion fatigue, 316
Electric power, 722-725
corrosion fatigue, 316
Electrical and electronic systems, automobiles, 679
corrosion fatigue, 316
Electrical continuity, highways, tunnels, and bridges, 709
corrosion fatigue, 316
Electrical insulation, coupons, 784-785
corrosion fatigue, 316
Electrical isolation, highways, tunnels, and bridges, 709
corrosion fatigue, 316
Electrical resistance
corrosion fatigue, 316
copper and copper alloys, 573-574
corrosion fatigue, 316
industrial waters, 415
corrosion fatigue, 316
measurements, corrosion inhibitors, 489
corrosion fatigue, 316
Electrical resistance probes, 189-190
corrosion fatigue, 316
chemical processing, 787
corrosion fatigue, 316
microbiological effects, 516
corrosion fatigue, 316
seawater, 374
corrosion fatigue, 316
soils, 396
corrosion fatigue, 316
Electrical resistivity, soils, 399
corrosion fatigue, 316
Electrochemical behavior, tantalum, 617
corrosion fatigue, 316
Electrochemical tests, metallic coatings on steel, 627-629
corrosion fatigue, 316
Electrochemical behavior, niobium, 618
corrosion fatigue, 316
Electrochemical corrosion measurements, high-temperature/high-pressure corrosion testing, 152-153
corrosion fatigue, 316
Electrochemical critical temperature, 227-228
corrosion fatigue, 316
Electrochemical factors, stress corrosion cracking, 291-292
corrosion fatigue, 316
Electrochemical impedance, 101-102, 112-114
corrosion fatigue, 316
Electrochemical impedance spectroscopy corrosion inhibitors, 492-493
corrosion fatigue, 316
freshwater, 383
corrosion fatigue, 316
metallic coatings on steel, 628
corrosion fatigue, 316
microbiological effects, 514-515
corrosion fatigue, 316
seawater, 373
corrosion fatigue, 316
Electrochemical kinetic data, obtaining corrosion rates, 108-109
corrosion fatigue, 316
Electrochemical laboratory tests, soils, 401-402
corrosion fatigue, 316
Electrochemical measurements corrosion inhibitors, 489-493
corrosion fatigue, 316
soils, 184-186
corrosion fatigue, 316
Electrochemical mechanism, 632-634
corrosion fatigue, 316
Electrochemical methods, pipeline, 702-703
corrosion fatigue, 316
Electrochemical noise, 61-62, 121, 790-791
corrosion fatigue, 316
microbiological effects, 516
corrosion fatigue, 316
measurements, corrosion inhibitors, 493
corrosion fatigue, 316
organic coating, 127
corrosion fatigue, 316
resistance, 115-117
corrosion fatigue, 316
Electrochemical polarization

Electrode reaction, thermodynamics and electrode potential, corrosion fatigue, electrochemical reactivation technique, 61
Electrochemical probes, 190–191, 783
Electrochemical reactivation technique, 61
Electrochemical test data, 59–62
Electrochemical tests, 107–127, 207–210, 213 alloy sensitization, 124–125
anodized aluminum corrosion test, 125 automobiles, 679–680
barnacle electrode technique, 123 bleach plant, 799
characterization of anodized surfaces and conversion coatings, 127 crevice corrosion, 226–229
critical temperature tests, 218 cyclic polarization, 215–217
Cyclic Potentiodynamic Polarization methods, 118–119
dealloying, 284
electrochemical impedance methods, 112–114
electrochemical impedance spectroscopy, 126–127
electrochemical noise, 121, 127, 218–219
electrochemical noise resistance, 115–117
Electrodeposited coatings, 660
electrolytic corrosion test, 125
electronics, 759
evaluation of protective coatings and films, 125–127
exfoliation corrosion, 269
Frequency modulation methods, 114–115
galvanic corrosion, 117–118, 239, 242
galvanostatic measurements, 217
metals processing, 776–777
nickel and nickel alloys, 584
organic liquids, 455
Paint adhesion on a scribed surface test, 125
passivity and localized corrosion, 118–122
Permeation method, 123–124
polarization methods, 109–117
potential probe methods, 118
potential step-down or scan-down methods, 119–120
potentiodynamic methods, 122–123
potentiostatic measurements, 217–218
powder metallurgy materials, 666–667
pulp and paper, 797
Scratch repassivation, 120, 122
Seawater, 372–373
shot noise methods during pitting, 121–122
Single frequency impedance test, 126
specimen mounting, 213–215
Statistical distribution in critical potentials, 120–121
Table extraction, 110
telecommunications, 766
Tribo-ellipsometric methods, 122
Electrode potential, corrosion fatigue, 308–309
Electrode reaction, thermodynamics and kinetics, 107–109
Electrodeposited coatings, 656–662
Chronopotentiometry, 661
corrosion mechanisms, 657–659
corrosion potential measurements, 660–662
corrosion resistance, 656
corrosion testing, 659–662
EC test, 661
electrochemical tests, 660
in-situ imaging and nondestructive evaluation, 662
polarization resistance, 661
porosity, 659
salt spray-fog test, 660
electrolyte chemistry, freshwater, 381–382
Electrolyte, effects on freshwater corrosion testing, 179
Electrolyte flow rate, 235–236
Electrolytic cleaning procedures, 46
Electrolytic corrosion test, 125
Electrolytic etching, 69
Electrolytic polishing, 69
Electromotive series, 395
Electronics, 754–760
Classification of environments, 755–756
corrosion mechanisms, 756–757
corrosion of components, 757–758
corrosion products, 760
Electrochemical tests, 759
Environmental tests, 759–760
Environment, 754–755
materials, 754
tests and standards, 758–759
Electrostatic precipitator, 805
Elements, physical properties, 32
Energy storage batteries, lead and lead alloys, 535–536
Engine coolants, 676
Engine oils, 676
Enhanced diffusion models, dealloying, 280
Enamelled, seawater, 371
Environmental cracking, 370, 373–374, 700
Environmental deterioration analysis, 215
Environmental factors, stress corrosion cracking, 291
Environmental hydrogen embrittlement, 325
Environmental modification, highways, tunnels, and bridges, 709
Environmental simulation, telecommunications, 766
Environmentally assisted cracking, 122–125
Erosion corrosion, 275–276, 494, 789
copper and copper alloys, 574–575
Factors controlling, 273–274
freshwater, 386
mechanisms, 273
seawater, 370
Error, 83
Etching, sample, 69–71
Evans diagram, 233–235
Exfoliation corrosion, 266–272
aluminum and aluminum alloys, 266–267, 552–554
classification, 270
electrochemical and conductivity tests, 269
evaluation of test results, 269–270
immersion tests, 268–269
relation to service conditions, 267
specimen inspection, 270–271
test controls, 272
test duration, 269
test procedures, 267–269, 271–272
test specimens, 269
Expert Systems, 99–100
External corrosion direct assessment, buried pipelines, 402–404
Extreme value statistics, 85, 94
F
Factorial designs, 55
Factorial experiments, 55, 85–86
Failure, 64
Factors and subfactors controlling occurrence, 91
Failure analysis, 91, 712–713
Failure modes, nuclear power, 733
Faraday’s equation, 270
Faraday’s law, 242
Faraday’s equation, constants, 30
Faraday’s law, 109, 242
Fault tree analysis, 95–96
Ferric sulfate-50% sulfuric acid test, 253
Ferritic stainless steel, 248, 586–587
Ferrotit test, powder metallurgy materials, 667–668
Fibers, effect on lead metal-matrix composites, 646
Field tanks and vessels, 819
Filliform corrosion, 135, 553, 555–556
Fine particles, indoor atmospheres, 357–360
Fire protection, flue gas desulfurization, 750
Fitness-for-service evaluations, 781
Fixturing, 66–67
Flow induced localized corrosion, 494
Flow rate, effect on corrosion, 176
Flue gas desulfurization, 746–752
corrosion control, 749–750
corrosion environments, 749
fire protection, 750
materials of construction, 746–748
test methods, 750–752
welding, 750
Fluidized bed boiler, 805
Fog testing, copper and copper alloys, 571
Food and beverage, 822–824
Forced-convolution loops, liquid metals, 476
Ford Std M2C 138-CJ, 683
Ford TM-BI 123–01, 681
Foundations, 357–360
electric power, 723–724
selection of type, 707
Foundry products, aluminum and aluminum alloys, 549
Four-point bend tests, 336–337
Fracture mechanics testing, hydrogen damage, 332–339
Free fround water, 389
Frequency modulation methods, 114–115
Freshwater, 380–386
biological factors, 381
corrosion forms, 382
dealloying, 386
electrolyte chemistry, 381–382
Factors affecting corrosion, 175–176
metallurgy, 381
process conditions, 381
resistance probes, 383
water chemistry, 380–381
weight loss testing, 382
Freshwater corrosion testing, 175–180
Cavitation, 386
design, 177
Electrochemical impedance spectroscopy, 383
electrochemical polarization, 384
Electrolyte flow effects, 179
erosion corrosion, 386
exposure methods, 176–179
galvanic corrosion, 178–179, 384, 386
intergranular corrosion, 180, 386
pitting and crevice corrosion, 178, 383–384
Overhead ground wires, electric power, 725
Overvoltage values, 26
Oxalic acid etch tests, 253–255
Oxidation
high-temperature, 197, 436
metallurgical analysis, 74
Oxidation rate laws, high-temperature gases, 436–437
Oxidation reduction potential, water handling systems, 831
Oxidation testing, 575, 597
Oxide formation model, dealloying, 281
Oxidation rate laws, high-temperature
Oxidation
Oxalic acid etch tests, 253–255
industrial chemicals, 419–420
in chemical processing, 781
oil and gas production, 812–819
temperature and pressure, 426
chemistry, 431
preventing changes in solution
liquid water phase, 426–427
physical phases, 425
preventing changes in solution chemistry, 431
produced water systems, corrosion testing, 427–431
sweet/sour, 425
temperature and pressure, 426
oil and gas production, 812–819
pH
in chemical processing, 781
corrosion inhibitors, 484
industrial chemicals, 419–420
seawater, 366
soils, 390, 400
Pharmaceutical materials, 846–847
Phases transport-controlled erosion, seawater, 370
Phosphor bronzes, 567

Physical properties, 31–32, 37
Physical vapor deposition, 621
Pickling, zirconium and hafnium, 614
Piers and docks, 716–721
composite materials, 716–717
corrosion control, 719–720
corrosive environments, 717–719
design, 719–720
immersion zone, 718
interior zone, 718–719
marine atmosphere zone, 719
materials selection, 717
need for standardization, 721
performance assessment, 720
problem areas, 720
protective coatings, 719
reinforced and prestressed concrete, 716
sediment zone, 718
splash and spray zone, 719
test methods, 720–721
wood, 716
Pilot plant testing, chemical processing, 784
Pipe coupon, 701
Pipeline, 696–704
Pipe coupon, 701
Polarization methods, 109–117
concentration effects, 110–111
freshwater, 382–383
metal-matrix composites, 650
pipeline, 702–703
Polarization resistance, 60, 111–112
electrodeposited coatings, 661
measurements, complications, 112
microbiological effects, 513
solution resistance, 110
Polarization sweeps, corrosion prediction, 100
Polishing, 68–69
Population, 83
Potential, 59, 120–121
Potential mapping, soils, 185
Potential measurements, pipeline, 703
Potential probe methods, 118
Potentiodynamic methods, 122–123
Potentiodynamic polarization, 789
Potentiodynamic sweep techniques, microbiological effects, 514
Potentiostatic tests, 119, 217–218, 576
Powder metallurgy materials, 664–669
atmospheric testing, 665
electrochemical tests, 666–667
ferrozyl test, 667–668
immersion tests, 665–666
salt spray tests, 666
sintered stainless steels, 668–669
Power conversion and auxiliary systems, 729, 732–733
Precast concrete lining, 706
Precipitation-hardening alloys, stainless steels, 587
Precorroded surfaces, inhibition, 496–497
Pressure vessels, nuclear power, 728–729
Pressurized corrosion tests, 147–149
Probability distribution, 83–84, 84–85
Probability functions, propagation, 94–99
Probability sampling, 53
Probe testing, chemical processing, 787–788
Process control, hydrogen damage, 328–329
Produced water gas systems, corrosion testing, 430–431
Programmed stress intensity experiment, corrosion fatigue, 316
Protective coatings and films
aluminum and aluminum alloys, 547, 549–550, 556
copper and copper alloys, 565
electrochemical evaluation, 125–127
metallic, on steel, 628
stainless steels, 585
Pulp and paper, 795–806
bleach plant, 798–800
chemical pulping, 800–803
corrosion fatigue, 798
corrosion inhibitors, 797