Subject Index

A
Alternative hypothesis, 48
defining, 50
Ancillary tank equipment, definition, 25
Assessment phase, waste pile example, 60
ASTM D 1452, 20
ASTM D 1586, 19
ASTM D 1587, 20
ASTM D 4387, 19
ASTM D 4448, 19-20
ASTM D 4700, 19-20
ASTM D 4823, 20
ASTM D 5013, 20
ASTM D 5358, 20
ASTM D 5495, 20
ASTM D 5956, 24
ASTM D 6009, 55
ASTM D 6051, 23, 60
ASTM D 6232, 18

B
Boundaries, 5
defining, 57
Box and whiskers plot, 62-63
40 CFR 260.10, 25
40 CFR 261.24, 6, 56

C
Chain of custody form, 29-30
Chain-of-custody procedures, samples, 29-31
Coefficient of variation, 62, 64
Comprehensive Liability Act of 1980, 29
Confidence intervals, 36, 43
Container, definition, 25
Contamination problem, description, 3

D
Data
checking for normality, 34
preparing for statistical analysis, 34
transformations in statistical tests, 35-36
Data assessment phase, 33-37
Data collection, 16-29
chain-of-custody procedures for samples, 29-31
composite sampling, 20, 23
field records and sample identification, 28
field screening, 20
heterogeneous waste, 23
investigation derived waste, 26-28
laboratory coordination, 16
mobilization, 17-18
particle size reduction, 25
personnel decontamination, 26
sample location selection, 19
sample shipment, 28
sampling equipment
decommissioning, 26
selection, 18-19
sampling waste units, 25
site entry and reconnaissance, 16-17
waste pile example, 57-60
Data life cycle, Data Quality Assessment, 33
Data Quality Assessment, 33
conclusions and reports, 36
data life cycle, 33
data preparation for statistical analysis, 34
overview, 33
preliminary data analysis, 34-35
review DQOs and sampling design, 33-34
statistical assumption check, 34-35
statistical testing, 35-36
Data Quality Objectives, 1-4
boundaries, defining, 5
composite sampling, 9
data collection and design optimization, 6-9
decision errors, specifying limits on, 6
decision rule development, 5-6
defining, 2
identifying decisions, 3-4
identifying inputs to decisions, 4
impact of process on project, 2
process and overall decision process, 3
review, 33-34
waste pile example, 60
sample size estimating requirements, 8
post-study assessment, 8
sampling designs, see Sampling designs
stating the problem, 3-4
waste pile example, 55-57
DataQUEST, 33-35
Decision errors
false positive and negative, 48, 50
identifying, 48-50
parameter values where consequences are minor, 51
potential consequences, 50
specifying tolerable limits, 6, 47-52
background, 47-48
determining possible range of parameter of interest, 48
expected outputs, 47
waste pile example, 57
tolerable probability, 51
Decision rules, 5-6
developing, 57
Disposal equipment, 26

E
EPA QA/G-4, 2, 6, 34
see also Decision errors
EPA QA/G-9, 33-36, 60, 62-63
EPA SW-846, 25, 35-36, 56-57

F
False positive and negative, 48, 50
55 Federal Register 26990, 25
Field documentation, 28-31
Field records, 28-29
Field screening, 20

H
Histogram, 62
Hypothesis tests, 43

I
Implementation phase, see Data collection
Investigation derived waste, 26-28

M
Minimum detectable difference, 51
Mobilization, data collection, 17-18

N
Null hypothesis, 36, 48
choosing, 48-50
defining, 50

O
Optimal allocation, 8-9
Outliers, assessing, 35

P
Particle size reduction, 18, 25
Performance evaluation, 32
Personnel, decontamination, 26
Personnel protective equipment, 26
Planning phase, 2-15
see also Data Quality Objectives
Population sampling, difficulties, 1
Proportional allocation, 8-9

Q
Quality Assurance Project Plan, 7
certified sample locations, 19
Quantile-quantile probability plot, 35, 63

R
Reagents, used during decontamination, 25-26
Receipt for samples form, 29, 31
Resource Conservation and Recovery Act of 1976, 29
waste characterization, 23

Copyright © 2000 by ASTM International
www.astm.org

75
Samples
chain-of-custody procedures, 29-31
estimating number required, 8
waste pile example, 58
identification, 28-29
post-study assessment of number, 8
shipping, 28
Sampling designs, 9-14
authoritative, 9, 14
composite, 9, 14
data collection, 20, 23-24
not meeting Data Quality Objectives, 60
probabilistic, 14
probability, 13
review, 33-34
selection, 10–12
simple random, 8, 14
waste pile example, 58-59, 60
stratified, 8-9, 14
waste pile example, 67-68
stratified systematic, waste pile example, 59-60
systematic, 8, 14
systematic grid
with compositing, waste pile example, 66-67
waste pile example, 59-60
without compositing, waste pile example, 65-66
waste pile example, 57-58
Sampling equipment, decontamination, 25-26
Shapiro-Wilk test for normality, 34, 63, 65
coefficients of a, 70-71
quantiles of t distribution, 73
quantiles of W test, 72
Site
components, 18
entry, 16
reconnaissance, 16-17
work zones, 17
Statistical analysis, preparing data for, 34
Statistical outlier, 35
Statistical quantities, 34
Statistical tests
data transformations, 35-36
selecting and preforming, 35-36
Sump, definition, 25
Superfund, 29
Support zone, 18
Surveillance, 32
Tank, definition, 25
Technical assessments, 29, 32
Technical system audits, 32
Toxicity Characteristic Leaching Procedure, 25, 55-56
versus total results, waste pile example, 62-63
Toxicity Characteristic Rule, 55-56
U
Upper confidence limit, 63-67
W
Walk-through, 18
Waste
heterogeneous, data collection, 24
investigation derived, 26-28
Waste pile, 24
example, 55-68
authoritative sampling design, 57-64
cost of sampling, 59-60
data collection, 57-60
Data Quality Objectives, 55-57
implementation phase, 60
inputs to decision, 56-57
non-normal data distribution, 64-65
topographic base map, 55-56
Waste units
containerized, 25
sampling, 23
uncontainerized, 25