Subject Index

A
Apparatus, 9–16
fixtures, 9–12
recording equipment, 16
requirements, 35
transducers and electronics, 11–15
ASTM A 533B, 27–28
ASTM E 4, 35
ASTM E 399, 35
ASTM E 647, 10
ASTM E 813, 3, 6, 9–10, 12, 18, 27
ASTM E 1523, 3, 6–7, 9, 12, 18, 27
ASTM E 1290, 1–2, 6–7, 9, 12, 27–28, 33, 35–39
precracking requirements, 18
requirements on surface measurements, 36
ASTM E 1737, 1–8, 10, 14, 27–28, 31–33, 35–39, 47
heat tinting of steels, 22
precracking requirements, 18
requirements on surface measurements, 36

B
Bend testing, standard fixture, 9

C
Calibration fixture, 12, 15
Clevis, compact specimen testing, 10–11
Clip gage, 11, 14
Compliance equations, 7–8
Crack, measurement, 23–24
Crack growth, J-integral use in presence of, 6
Crack length, 7–8
Crack mouth opening displacement, transducer, 11, 13
Crack opening displacement, measurement, digital resolution, 14
Crack tip opening displacement analysis using basic test data, 28
estimation from crack opening displacement, 6
qualifying, 38
quantities analysis, 28
testing, 2

D
Data, qualification, 35
d-c potential drop system, 30
8 equations, 4–6
Double cantilever displacement gage, 11, 13
Ductile crack extension, restricted, 7
Elastic compliance correction, specimen rotation, 8
Elastic-plastic fracture, 2–3
testing future developments, 39
Electronics, 11–15
Fixtures, 9–12
Fracture instability, J-integral at cleavage, 28
Fracture toughness resistance curve (see J-R curve)
Fracture toughness testing, transducers, 11–15
Initialization fit program, 56–63
J
J axis, limit of region on, 37
Jc, qualifying, 37
J-integral, 1–2, 4–6
analysis, 23
at cleavage, 27–28
qualifying, 37–38
elastic component, 5
at fracture instability, 6–7
limits of applicability, 6–7
near onset of ductile crack growth, 24–27
qualifying, 38
plastic component, 4, 6
use in presence of crack growth, 6
J-R curve, 1, 3
advanced test procedure, 31–32
after initialization, 33
analysis, 12
at crack backup due to pin/clevis interference, 10, 12
qualifying, 37
according to E 1737, 38
secant lives data spacing requirement, 36–37
L
Linear elastic fracture mechanics, 2
stress intensity, 5
Load displacement curve, 31–32
crack extension and, 5
Load displacement record, 2
Load line transducers, 11
M
Machining specimens, 17–18
Maximum load, during precracking, 18
N
Notch and crack envelope, 17
P
Power law, 24
Precracking, 18–21
R
Recording equipment, 16
S
Single edge notched bend specimens
alignment of fixtures, 10
precracking, 9–10
Small-scale yielding conditions, 7
Specimens
machining, 17–18
precracking, 18–21
preparation requirements, 35–36
Steels, heat tinting, 22
Strain gage bridge flex bar, 11, 14
T
Tearing modulus, 32
Test procedure, 22–23
advanced, 30–32
data analysis, 32–34
initialization calculations, 33
J-R curve, 31–33
load displacement curve, 31–32
system schematic, 30
crack measurement, 23–24
CTOD quantities analysis, 28
Jc or Ju analysis, 27–28
J-integral analysis, 23
Jc evaluation, 24–27
multi-specimen method, 23–25
requirements, 36
summary of basic method, 28–29
Transducers, 11–15
amplifier/conditioners, 12
requirements, 35
U
Unloading compliance data acquisition program, 48–55

101

Copyright © 1996 by ASTM International
www.astm.org