Subject Index

A

Accreditation programs, 217
Acetic acid, 34, 74
Acetone, 43
Acetylacetone, 42, 116-117
Acetylene, 30, 32
AC glow discharge source, 180, 184
Acid/base indicators, 148-149
Acid/base titrations, 152-153
Acid dissolution, 70-81
pure metals, 78
Acid-resistant metals, hygroscopic salts, 44
Acids, 31-35
boiling points, 75
non-oxidizing, 71-75
nonoxidizing mixtures, 74-75
oxidizing, 75-78
oxidizing mixtures, 76-77
additives, 77-78
standardization by titrants, 148
Acid treatment, for inclusions, 89
ACS grade, 29
Action level, 209
Activation analysis, 184
Additives, in oxidizing acid mixtures, 77-78
Air, 30, 32
ignition of organics, 82-83
Air baths, 25
Air conditioning, 5
Air exchange in laboratories, 5
Alberene stone, 12-13
Alchemy, ix, 3, 15
Alcohols, 43
Aldehydes, 44
Aliquant, 61
Aliquot, 61
Aliquoting, 204-206
Alkali metals, chemical behavior, 242
Alkaline-resistant/boron-free glass, 16
Alloys, frequency of analyte concentrations, xii
Alpha-benzoinoxime (See Benzoin monoxime)
Alumino-borosilicate glass, 16
Aluminosilicate glass, 15
Aluminum
after mercury cathode electrolysis, 102
ammonium hydroxide precipitation, 98-99
gravimetric measurement, 146
separations, 125
from beryllium, 104
spectrophotometric method, 117
volumetric measurement, 153
wet chemical methods, 111-112
Alundum (fused alumina), 19
Ammonia, 30, 32
Ammonium carbonate, 102
Ammonium fluoride, 41
Ammonium hydroxide, 35
precipitation, 97-100
Ammonium iron sulfate, 38
Ammonium molybdate, 43
Ammonium oxide, 41
Ammonium perchlorate, 34
Ammonium peroxysulfate, 38
Ammonium persulfate, 389
Ammonium phosphate, dibasic, 41
Analysis of variance (ANOVA), 67, 197-199
Analysis, 70
chemical behavior, 234-241
distillation, 121
Analytical chemistry, ix, xi
Analytical sampling constant, 68
Anion exchange systems, 119-120
Annealing, 63
ANOVA (See Analysis of variance)
Antimony
distillation, 121
separations, 125
Applied potential reduction, 108
Aqua regia, 76
Aqueous caustic solutions, 91
Arc/spark optical emission laboratory, 11
Argon, 31
Aromatic compounds, 44
Arsenic
arsine generation/spectrophotometric procedure, 105
distillation, 121-122
separations, 125-126
Arsenous oxide, 38
Asbestos, 19
Ascorbic acid, 39
Ascorbic acid, 39
ASTM D 1193, 30
ASTM D 3856, 219
ASTM E 32, 58, 65
ASTM E 59, 55
ASTM E 60, 160
ASTM E 172, 216
ASTM E 173, 217
ASTM E 207, 23
ASTM E 350, 117
ASTM E 356, 216
ASTM E 452, 44
ASTM E 478, 116
ASTM E 691, 217
ASTM E 877, 58
ASTM E 1172, 216
ASTM E 1479, 216
ASTM E 1507, 216
ASTM E 1601, 217
Atomic absorption, 162-167
calibration, 163-164
laboratory, 11
Audits
external, 217
internal, 216-217
Automatic titrators, 27, 156-157
Bakelite, 16
Balance room, 9-10
Balances, analytical, 9
Bartium
gravimetric measurement, 145
separations, 126
Barium chloride, 41
Bases, 35-36
Batch, 52
Beakers, 20
borosilicate, 20
fused silica, 20
plastic, 20
polytetrafluoroethylene, 20
removing residues, 203
Vycor, 20
Beer’s law, 158
Bell jar, 25
Benzene, 44
Benzoin anti-oxime, 40
Benzoin monoxime, 40
extraction, 116
precipitation, 105
(N)-Benzoyl-N-phenylhydroxamine, 117
Beryllium, separations, 126
Bias, 191-192
Billlets, 55
Bismuth, separations, 126
Blanking approach, 161
Bloom, 55
Boiling water baths, 26
Boil rod, 207
Bone ash, 19
Book molds, 53
Borates, 36
Borax, 36, 85
Boric acid, 36, 85
Boron
distillation, 122
interference evolution, 121
interference from Fe and Co, 111
separations, 126
volumetric measurement, 152-153
Boron trioxide, 36, 85
Borosilicate glass, 15
reagent storage vessels, 46
Bottles, 20
Boyle, Robert, 3

Copyright © 1996 by ASTM International www.astm.org
Cadmium, separations, 126-127
Calcium, separations, 127
Calibration, 191, 194, 216 curve, 163-164
Carbon measurement, 177-178 separations, 135
Carbon dioxide, 31-32
Carbon tetrachloride, 43
Carboys, 20
CASTINGs, large, 55
Cation and chelating ion exchange, 120
Ceiling limit, 209
Cellulose acetate, 24
Cellulose nitrate, 24
Centroid, calibration curve, 198
Ceric ammonium nitrate, 37
Ceric sulfate, 37
Cerium, separations, 127, 135
Certification programs, 217
Certified reference material, 192-193
Cesium, separations, 127
CGA outlets and connections, 31-32
Charge-coupled device, 172
Charge injection device, 172
Chelate complexes, extraction, 115-118
Chelating agents, 115
Chemical effects, interferences, 164
Chemical inventory control, 210
Chemical waste disposal, 211
Chemistry atomic absorption, 167 emission spectroscopy, 175-176 spectrophotometry, 160-161
Chloride as medium for mixing elemental standards, 206 precipitation, 108
Chloride complexes, extraction, 113
Chlorinated hydrocarbons, 43
Chlorination, 90
Chlorine, 30, 32 separations, 135
Chlorof orm, 43
Chromate, precipitation, 109
Chromatography, 181-183
Chromium interference evolution, 121 separations, 127
sodium hydroxide precipitation, 101 volumetric measurement, 154-155
Cinnamaldehyde, 41, 107
Cleaning labware, 203-204 Coanda effect, 204 Cobalt separations, 127 volumetric measurement, 155
Coefficient of variation, 196 Cold vapor atomic absorption, 167
Commercial laboratories, 216
Communion, 52, 61, 64-65
Comparative methods, x-xi, 189-190
Complexation titrations, 155-156
Complexing agents, 41-42
Composite sample, 52
Compton scattering, 175
Coping and quartering, 64
Consignment, 52
Constitution heterogeneity, 52
Continuum-source background correction (AA), 165
Control charts, 195 records, 216
Control laboratory, 6
Coordination compounds, 115
Copper electrogravimetric measurement, 143-144
electrogravimetric method, 105 interference on P2149 Å, 100 separations, 128 spectrophotometric measurement, 162
Corex (aluminosilicate) glass, 15
Corporate environment, 213
Correlation coefficient, 198
Crucibles selection guide, 19 sizes, 20
(See also specific materials)
Crushing, samples, 63
Crystals, dispersion characteristics, 173
Cupferron, 40 extraction, 115 precipitation, 102-103
Curcumin, 43
Czerny-Turner configuration, 169

D
Darkroom, 11
Davy, Sir Humphrey, 3
DC arc source, 170
DC plasma source, 172
Definitive methods, x-xi, 189
Degrees of freedom, 197
Desiccators, 25-26
Cabinets, 26
Deissants, properties and application, 26
Detection limit, 200-201
Detectors and readout (OC), 172
Deviatio n, 197
Di ammonium phosphate, 107-108
Dianthramide, 43
Diantpyrylmethane, 43
Dichloromethane, 43
Diethyl ether, 43
Differential spectrophotometry, 160
Diffraction gratings, 170
Diluting, 204-206
Dimethylglyoxime, 40, 43 extraction, 116 precipitation, 105-107
2,5-Dimethyl-1,10-phenanthroline, 43

E
Echelle spectrometer, 170
EDTA, 41-42
Elastic collisions, 175
Elastomers, 17
Electrical equipment, 27
Electrical fixtures, laboratory, 4-5
Electrochemical plating apparatus, 27
Electrolysis, 90-91 for inclusions, 90
mercury cathode, 110-112
Electrolytic conductivity detector, 182
Electron capture detector, 182
Electrothermal atomic absorption, 166-167
Element, weighing as, 143-144
Elemental forms, reduction to, 108
Elemental standard solutions, 44-46
Element sensitivities in atomic absorption, 163-165
Eluent suppression, 182
Emergency planning, 210-211
Emergency showers, 14
Emission spectrometry laboratory, 11
Emission sources, 170-172
Energy dispersive X-ray spectrometer, 174
Equipment metrology, 216 miscellaneous, 27-28
Erbitum, 135
Erlenmeyer flasks, 20-21
Errors, handling, 216
Ethanol, 434
Ethanes, 44 extraction, 114
Europium, 135
Evaluations of personnel, 222
Errors, handling, 216
Eyesashes, 14

F
Face shields, 27
Farrady, Michael, 3
FEP, 17
Ferrous ammonium sulfate, 38
Ferrous sulfate, 38
Filter cones, 23
Filter paper, 23–24
Filter photometers, 158
Filter pulp, 23
Filtration equipment, 23–25
Finished product certification, 8
Fire assay, ix, 6, 122–123
Fire extinguishers, 14, 27
Fisher filtrator, 25
Flame atomic absorption, 166
preconcentration techniques, 112
Flame emission, 172
Flame ionization detector, 182
Flame photometric detector, 182
Flashpoint temperature, 209–210
Flasks
Erlenmeyer, 20–21
removing residues, 203
vacuum filtration, 23
Floors, laboratory, 4, 6
Flow proportional detector, 182
Flowers, 30-32
Gas chromatography, 181-182
Fluorinated ethylene propylene (FEP), 17
Fluorine, properties, 16
Gadolinium, 135
Gallium, ammonium hydroxide precipitation, 98–99
separations, 128
Gas chromatography, 181–182
Gases, 30–32
mixtures, 31
sampling, 59
Gas service, 6
Geiger tube, 173
Germanium, distillation, 122
separations, 128
Glass, 15–16
labware composition and thermal properties, 16
Glassblowing, 14, 20–21
Glasses, safety, 27, 62
Glass fiber filters, 23–24
Glass frit crucibles, 25
cleaning, 203
Glass tubing, 21
Gloves, safety, 27, 33
Glow discharge emission source, 171
H
Hafnium
carrier for minor constituents, 103
separations, 135
Halar ECTFE, 17
Half-cell potentials, redox species, 39
Halogen, separations, 135
Hardware, X-ray fluorescence, 173
Hazards associated with reagent use, 47
controlling, 208–210
limiting exposure, 209
management responsibilities, 208–209
principles, 208
types, 209–210
Heating and drying equipment, 25–26
Heating systems, 5
Helium, 31–32
Heterogeneity, 52
total, 57
Heteropolyacid complexes, 114
Hexanes, 44
High temperature alloy, ion exchange separation, 120
Hollow forms, sampling, 55
Holmium, 135
Homemade supplies, 207–208
Homogeneity testing problems, 67
of standards, 193
Hoods
canopy, 13
ducts, 3
fume, 12–13
perchloric acid, 12
Hot extraction, 178
Hotplates, 12, 207–208
Hydrazine sulfate, 39
Hydrobromic acid, 35, 74
Hydrocarbons chlorinated, 43
unsubstituted, 44
Hydrochloric acid, 32–33, 41, 71–72
H parameters, 119
mixture with nitric acid, 76
sulfuric acid, 33–34, 41, 72–73
ion exchange system, 119
Iron, 18
in high-carbon ferrochromium, 101
separations, 129
Volumetric determination, 99, 154
vanadium-bearing samples, 102
ISO 5725, 217
isobutyl alcohol, 43
ISO Guide 31, 193
ion exchange system, 119
Iron, 30, 32
measurement, 178
sampling for, 55–56, 63
separations, 135
Iodine, 37, 135
Iodide complexed, extraction, 113
Hydrogen, 30, 32
measurement, 178
sampling for, 55–56, 63
separations, 135
Hydrogen chloride, 31–32
Hydrogen peroxide, 38, 43, 77–78
Hydrogen sulfide, 31–32
Hydrolysis, precipitation by, 107
Hydrometry, 90
Hydroquinone, 43
Hydrous oxides, hydrolysis, 107
Hydroxyamine hydrochloride, 39
(6)-Hydroxyquinidine, 109, 117
(8)-Hydroxyquinoline, 40, 43
extraction, 115
precipitation, 103–104
Hypophosphorous acid, 39
Ice machine, 27
Ignition of organics, 82–83
1,1'-Iminodianthraquinone, 43
Immersion samplers, 54
Inclusion isolation, 89–90
Increment, 52
Indicators, 148–150
Indium, separations, 128
Inductively coupled plasma mass spectrometer, 180–181
Inductively coupled plasma optical emission laboratory, 11
Inductively coupled plasma source, 171, 180
Inductively coupled plasma torch, cleaning, 204
Inelastic collisions, 175
Inert gases, 31–32
Infrared absorption spectrophotometry, 184
Infrared lamps, 26
Ingamells and Switzer, 67–69
In-house reference material, 192
Insolubles, 79
Instruments, specifying, 216
Interferences in atomic absorption, 164–166
evolution, 121
Interlaboratory studies, 217
Iodine complexed, extraction, 113
Iodine, 37, 135
Ion association complexes, extraction, 113–114
Ion chromatography, 182–183
Ion exchange, 118–120
Ionic displacement, 89
Ionization effects, interferences, 164–165
Ion optics for mass spectrometry, 178–179
Ion sources for mass spectrometry, 179–181
Ion trap mass analyzer, 184
Iridium, separations, 128–129
Iron, 18
in high-carbon ferrochromium, 101
separations, 129
Volumetric determination, 99, 154
vanadium-bearing samples, 102
ISO 5725, 217
isobutyl alcohol, 43
ISO Guide 31, 193
SUBJECT INDEX 247
Isopropyl ether, 44
Isotope dilution mass spectrometry, 180-181
IUPAC, 51, 61

J
Jars, 20
Jaw crusher, 64
Johnson, C. M., 3
Jones reductor, 39

K
Kel-F, 18
Ketones, 43
Kitmax glass (See Borosilicate glass)
Kynar, 24

L
Laboratory benches, 13
design, 3-14
balance room, 9-10
building, 3-6
finished product certification, 8
hot metal control, 6-7
office areas, 9
purchased material verification, 7-8
R & D support, 8-9
sample preparation room, 14
small instrument room, 10
spectrometry laboratories, 10-11
wet lab, 11-14
ey early metals analysis, 3, 5
organization, 219-221
sinks, 13
style, 215
Laboratory information management system, 213-214
Laboratory sample (See Sample)
Labware
cleaning, 203-204
shapes and sizes, 20-21
volumetric, 21-23
washed, 27
Lactic acid, 78
Lanthanides, 135
Lanthanum, separations, 129, 135
Laser source, for atomic absorption, 185
Latex rubber, 17
Latex tubing, natural, 21
Lavoisier, Antoine, ix
Leaching agent, HCl as, 72
Lead, separations, 129
Leonardo da Vinci, ix
Liberation size, 57, 61, 66
Liebig, Justus, Baron von, 3
Lighting, laboratory, 4
Limiting exposure to chemical hazards, 209
LIMS, 213-214
Linear regression, 197-198
"Liquid fire" method, 83
Liquids, sampling, 59
Lithium, separations, 129
Lithium carbonate, 36, 85
Lot, 52
Low actinic glass, 16
Lucite (See Polymethyl methacrylate)
Lutetium, 135
Magnesium
in aluminum alloys, 101
separations, 129
from other alkaline earths, 104
Magnetic stirrers, 27
Management, safety responsibilities, 208-209
Manganese
separations, 129
spectrophotometric measurement, 161-162
Manufacture of standards, 193-194
Masking agents, 112-113
Masking techniques, spectrophotometry, 160-161
Mass analyzer detector, 182
Mass spectrometer laboratory, 11
Material and data flow, 117-118
Material data sheets, 210
Matrix modifiers in atomic absorption, 164, 167
Membrane filters, 24
Membrane filter vacuum filtration, 23
Mercury, 19
separations, 129-130
Mercury cathode, 27
electrolysis, 110-112
Metal labware, 18
Metals
Metallochromic indicators, 150
Metals
analysis measurement, future, 184-185
compounds, solubility, 41
molten, sampling, 52-55
oxidation with aqua regia, 76
residues, removing, 203
Methanol, 43
Method of additions (AA), 163-164
Methyl acetate, 43
Methylene chloride, 43
Methylethylketone, 43
2-Methyl-1-propanol, 43
Methylisobutylketone (MIBK), 43
Methanol, 43
Methionine, 43
Molybdenum
Molybdate, precipitation, 109-133
Nitric acid, 33, 75
mixture with
hydrochloric acid, 76
hydrochloric and hydrofluoric acids, 76-77
Nitrogen, 31-32
distillation, 122
measurement, 178
sampling for, 63
separations, 135
Nitrogen/phosphorus detector, 182
Nitric acid, 41, 109
(1)-Nitroso-2-naphthol, 108
extraction, 116
Nitroso R acid, disodium salt, 42, 116
Nitrous oxide, 31-32
Non-oxide ignited compounds, weighing as, 145
Nonparametric statistics, 202
Nylons, 17, 25

O
Office areas, 9
Optical designs for emission spectroscopy, 169-170
Optical emission spectroscopy, 169-172
Organics
destruction of, 82-83
residues, removing, 203
solvents, 43-44
Osmium
distillation, 122
separations, 130
Oxalate precipitation, 108
Oxalic acid, 38
Oxide
hydrochloric acid attack, 71
residues, removing, 203
weighing as, 144-145
Oxidizing agents, 36-38
Oxygen, 31-32
ignition of organics, 82-83
measurement, 178
sampling for, 63
separations, 135
Oxygen bomb, 82-83

P
Paired t test, 197
Palladium
gravimetric measurement, 146
separations, 130-131
Particulates, sampling, 57-59
Perchlorates, 34
precipitation, 109
Perchloric acid, 34, 70, 75-76, 77
Potassium ferrocyanide, 38
Potassium dichromate, 37, 78
Potassium ethyl xanthate, 116
Potassium chlorate, 78
Potassium carbonate, 36, 85
Potassium iodate, 37
Potassium metaperiodate, 38
Potassium permanganate, 36-37
Potassium pyrosulfate, 36, 86-87
Praseodymium, 135
Precipitants, 39-41
inorganic, 96
organic, 97-98
Precipitation, 96-97
alpha-benzoinoxime, 105
ammonium hydroxide, 97-100
cupferron, 102-103
dimethylglyoxime, 105-107
by hydrofluoric acid, 73
8-hydroxyquinoline, 103-104
para-bromomandelic acid, 107
sodium hydroxide, 100-102
sulfide, 104-105
Precipitation titrations, 155
indicators, 150
Precision, 196-199
Preparation error, 61
Pressure dissolutions, 80
Pressure vessel, decomposition, 72
Primary comparative methods, 189-190
Primary standard, 192
Professional integrity, 195
Proficiency testing, 217
Promethium, 135
(1)-Propanol (N-propanol), 43
(2)-Propanol (isopropanol), 43
Protective shields, 27
Purity of reagents, 29
PV, 17, 25
tubing, 21
Pyrex glass (See Borosilicate glass)
Pyrocatechol violet, 43
Pyrogallol, 43
Pyrochlorophenate, 17
Pyroceram, 19-20
Pyrolysis, 90
Pyrolysis, 90
Quality assessment, 215-217
Quality assurance, 215
Quality control, 215-216
Quantitation limit, 200-201
Quartz, gold sampling, 57-58
8-Hydroxyquinoline, 103-104
(8)-Quinolinol (See 8-Hydroxyquinoline)
Sample preparation room, 14
Sampling, 51-59
gases, 59
liquids, 59
molten metal, 52-55
precipitates, 57-59
scrap, 56-57
solid metal, 55-56
Sample preparation room, 14
Sampling, 51-59
gases, 59
liquids, 59
organic solvents, 43-44
oxidizing agents, 36-38
precipitants, 39-41
purity levels, 29
reactant gases, 30-32
reducing agents, 38-39
spectrophotometric, 42-43
storage, 13-14, 46-47
water, 29-30
Recording and storing data, 214
Redox-indicating electrodes, 27
Redox indicators, 149-150
Redox species, half-cell potentials, 39
Redox standard solutions, preparation, 40
Redox titrations, 153-155
Reducing agents, 38-39
Reduction, to elemental forms, 108
Reference material, 192-194
Reflex dissolution, 80
Refrigerator, explosion-proof, 27
Relative standard deviation, 68, 196
Repeatability, 198
interval, 198
Reporting conventions, 200-202
Reproducibility, 198
interval, 198
Research and development support, 8-9
Resins, ion exchange, 118
Rhenium, separations, 131
Rhodium, separations, 131
Riftling, 65
Robotic laboratory, 7-8
Ross electrode, 27
Round robin, 217
Rowland circle, 170
Rubber stoppers, 21
Rubber tubing, 21
Rubidium, separations, 131-132
Ruthenium, separations, 132
Safety, 6, 27, 46-47, 62, 208-210
equipment, 27
Samarium, 135
Sample, 52, 61
custody, 214
deoxygenizing, 53
preparation
examination for defects, 62
identification codes, 61-62
particulates, 64-66
preliminary acid cleaning, 63
solid metals, 61-64
Sample preparation room, 14
Sampling, 51-59
gases, 59
liquids, 59
molten metal, 52-55
precipitates, 57-59
scrap, 56-57
solid metal, 55-56
Sampling constant, 58
Sampling error, 51-52
Sampling guns, 54
Sampling plan, 51-52, 56
Sampling spoons, 53-54
Sampling tubes, 54
Sandbaths, 26, 207-208
Sandstone, impregnated hard, 12
Saturated calomel electrode, 27
Scandium, 135
Scanning monochromators, 169
Schöniger flask, 82
Selenium, separations, 135
Selenium, toxicology, 135
Selenium hexachloride, 135
Selenium dioxide, 135
Selenium monochloride, 135
Selenium tetrachloride, 135
Selenium trioxide, 135
Selenium trichloride, 135
Selenium tetrafluoride, 135
Selenium tetraiodide, 135
Selenium tetroxide, 135
Selenium trioxide, 135
Selenium trioxide, 135
Selenium trioxide, 135
Selenium trisulfide, 135
Selenium trisulfide, 135
Selenium trisulfide, 135
Selenium trisulfide, 135
Spare equipment storage, 14
Spark source mass spectrometer, 179
Solvent extraction-atomic absorption
Solvent extraction, 112-118
Solvent, storage shed, 14
Solutions
Solubility, metal compounds, 41
Solid metals
Solid sampling for ICP-OES, 171-172
Solid-state detectors, 174
Separatory funnels, 21
Sericological pipets, 22
Sewage, handling, 5
Shields (See Face shields; Protective shields)
Short-term exposure levels, 209
Showers, emergency, 14, 27
Sieves, 65
Silicon
Silicon dioxide, 113-114
silicon nitride, 113-114
interference evolution, 121
separations, 132
Silicone rubber, 17
Silver, 18, 25
separations, 132
Silver diethyldithiocarbamate, 42
Silver nitrate, 41
Silver reductor, 39
Sinters, 88-89
Small instrument room, 10
Smith-Hieftje background correction
(AA), 165-166
Sodium, separations, 132
Sodium acetate, 41
Sodium bisulfate, fused, 36, 87
Sodium bisulfite, 39
Sodium carbonate, 36, 84-85, 102
Sodium diethyldithiocarbamate, 116
Sodium dithionite, 39
Sodium hydroxide, 35-36, 88
precipitation, 100-102
Sodium meta-arsenite, 38
Sodium molybdate, 43
Sodium nitrite, 39
Sodium oxalate, 38
Sodium peroxide, 36, 87-88
Sodium pyrophosphate, 42
Sodium succinate, 41
Sodium sulfite, 39
Sodium thiosulfate, 38
Solutions
software
performance verification, 216
X-ray fluorescence, 174-175
Solid metals
sample preparation, 61-64
sampling, 55-56
Solid sampling for ICP-OES, 171-172
Solubility, metal compounds, 41
Solutions
synthetic standards, 206-207
transferring, 204
Solvent, storage shed, 14
Solvent extraction, 112-118
ion association complex, 113-114
masking agents, 112-113
Solvent extraction-atomic absorption
method, 100
Spare equipment storage, 14
Spark source mass spectrometer, 179
Spark sources, 170-171
Specifications, 199-200
Specific ion electrodes, 27
Specimen, 52
Spectral effects, interferences, 165
Spectrometry laboratory, 6, 10-11
Spectrophotometers, ix-x, 158-159
Spectrophotometric determinations, 159-160
chemistry, 160-161
Spectrophotometric methods, phosphorus, 100
Spectrophotometric reagents, 42-43
Spiking technique (AA), 163-164
Spill control, 210-211
kits, 14
Spray chamber for ICP-OES, 171
Sputtering, 171
Stainless steels, austenitic, hood construction, 12-13
Standard deviation, 196-197
Standardization of tiritants, 147-148
Standard operating procedures, 215-216
Standard reference material, 192
Standards, x-xi
manufacture, 193-194
use, 194-195
Sanni equilibrium, 38-39
Steel mill laboratory, x
Stoppers, 21-22
Stontium, separations, 132
Sub-boiling still, 35
Subsample, 52
Sulfate, precipitation, 108
Sulfide, precipitation, 104-105
Sulfur
distillation, 122
measurement, 177-178
separations, 132-133, 135
Sulfur dioxide, 31-32
Sulfuric acid, 33, 41, 73-74, 77
Sulfuric acid/nitric acid wet ashing, 83
Sulfurous acid, 39
Synthetic solution standards, 206-207
Systemic error, 191
T
Tannin, 108
Tantalum, 18
ICP/OES determination in high
temperature alloys, 103
separations, 133
Tartaric, citric, 78
Teflon FEP, 17
Teflon PFA, 17
reagent storage vessels, 46
Teflon PTFE (See Polytetrafluoroethylene)
Teflon TFE (See Polytetrafluoroethylene)
Tefzel ETFE, 17-18
TEPO (See Trioctylphosphine oxide)
Terror, 135
Test portion, 52, 61
reagent storage vessels, 46
Tetraphenylarsonium chloride, 114
Thallium, separations, 133
Thermal conductivity detector, 181-182
Thermal evolution methods, 177-178
Thermal shock, glass labware, 15-16
Thioacetamide, 41, 104-105
Thiocyanate complexes, 114
Thorium, separations, 133
Threshold limit values, 209
Thulium, 135
Tin
distillation, 122
interference evolution, 121
separations, 133
from aluminum alloys, 103
Titanium
in chloride/flouride ion exchange
eutent, 101-102
ggravimetric measurement, 144
and niobium, simultaneous
spectrophotometric measurement, 162
separations, 133-134
Titanium chloride, 39
Titrants, standardization, 147-148
Titration
equipment, 150-151
technique, 151-152
Titrimation, 147-157
indicators, 148-150
Toluene, 44
Tongs, 20
TOPO (See Trioctylphosphine oxide)
Total reflection X-ray fluorescence, 184
Total sampling error, 61
Training, 221-222
Transferring solutions, 204
Transition metals, effect on other lines, 111
(1,1,1)-Tetrahydroxane, 44
Trichloroethylene, 44
Trioctylphosphine oxide, 43, 113-114
extraction, 114-115
Tris-ethylhexyphosphine oxide, 114-115
T test, 196
Tungsten
coprecipitation for spectrophotometric
measurement, 105
ggravimetric measurement, 144-145
separations, 134
spectrophotometric measurement, 117-118
Tuttle covers, 21
Two-sided t-test, 196-197
Tygon (See Polyvinyl chloride)
U
Ultrafiltration, 80-81
Uranium, separations, 134
Utility service in laboratories, 5, 13
UV/visible molecular absorption, 158-162
UV/visible spectrophotometry, 185
V
Vacuum fusion, 178
Vacuum pumps, 23
Validation, 191-194, 216
Vanadium
sodium hydroxide precipitation, 101
separations, 134
Variance, 196
V-blender, 64
Verification, 194
Vials, 20
Viton, 18
Vitreous quartz, 16, 20
Vitreous silica, 16, 20
Volumetric flasks, 21-22
Volumetric labware, 15, 21-23
Vycor glass, 15-16, 20

W
Wash bottles, 20
Waste disposal (chemical), 211
Watchglasses, 20
Water, 29-30
Water, distilled, 5-6, 13
Wavelength dispersive X-ray fluorescence spectrometer, 173
Wet ashing, 83
Wet chemical analysis laboratory, 11-14
Wet chemical methods, aluminum, 111-112

Y
Williams-Steiger Occupational Safety and Health Act of 1970, 208
Youden plot, 217
Ytterbium, 135
Yttrium, 135

X
X-ray analyzer crystal, 173
X-ray collimator, 173
X-ray detectors, 173
X-ray fluorescence, x, 18, 24, 67, 169, 172-175
emission lines, 173
hardware, 173-174
software, 174-175
trace levels of rare earths, 111
X-ray fluorescence laboratory, 11
X-ray tube, 173-174
Xylene, 44

Z
Zeeman background correction (AA), 165-166
Zinc, separations, 134
Zinc oxide, 102
Zirconia, 19
Zirconium, 18
 crucibles, 18, 20
 sodium peroxide fusion, 87
 gravimetric measurement, 145
 separations, 134-135