1. Scope

1.1 This test method covers the determination of total chloride (organic and inorganic) in liquid aromatic hydrocarbons and cyclohexane.

1.2 The test method is applicable to samples with chloride concentrations of 1 to 25 mg/kg.

1.3 Bromides and iodides, if present, will be calculated as chlorides.

1.4 Materials, such as styrene, that are polymerized by sodium biphenyl reagent cannot be analyzed by this test method.

1.5 The following applies to all specified limits in this test method: for purposes of determining conformance with this test method, an observed value or a calculated value shall be rounded off "to the nearest unit" in the last right-hand digit used in expressing the specification limit, in accordance with the rounding-off method of Practice E 29.

1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. For a specific hazard statement, see Section 7.

2. Referenced Documents

2.1 ASTM Standards:
- D 891 Test Method for Specific Gravity, Apparent, of Liquid Industrial Chemicals
- D 1193 Specification for Reagent Water
- D 3437 Practice for Sampling and Handling Liquid Cyclic Products
- D 3505 Test Method for Density or Relative Density of Pure Liquid Chemicals
- D 4052 Test Method for Density and Relative Density of Liquids by Digital Density Meter
- E 29 Practice for Using Significant Digits in Test Data to Determine Conformance with Specifications

2.2 Other Documents:

1. This test method is under the jurisdiction of ASTM Committee D-16 on Aromatic Hydrocarbons and Related Chemicals and is the direct responsibility of Subcommittee D16.05 on Instrumental Analysis.

3. Summary of Test Method

3.1 A known amount of hydrocarbon sample is transferred into a separatory funnel containing toluene. Sodium biphenyl reagent is added to convert organic halogens into inorganic halides. The excess reagent is decomposed with water and the phases are separated. The aqueous phase is acidified, washed, and concentrated. Acetone is added and the solution is titrated with silver nitrate solution.

4. Significance and Use

4.1 Organic and inorganic chlorine compounds can have a deleterious effect on equipment and reactions in processes involving aromatic hydrocarbons.

4.2 Maximum chloride levels are often specified for process streams and for aromatic hydrocarbon products.

5. Apparatus

5.1 Titrator, potentiometric, recording, + 2000 mV range, 1 mV resolution with dispenser having a volume readout of 0.00 to 9.99 mL or 0.00 to 99.99 mL and 0.01 % resolution.

5.2 Electrode, glass, reference.

5.3 Electrode, silver, billet type.

6. Reagents and Materials

6.1 Purity of Reagents—Reagent grade chemicals shall be used in all tests. Unless otherwise indicated, it is intended that all reagents conform to the specifications of the Committee on Analytical Reagents of the American Chemical Society, where such specifications are available. Other grades may be used, provided it is first ascertained that the reagent is of sufficiently high purity to permit its use without lessening the accuracy of the determination.

6.2 Purity of Water—Unless otherwise indicated, references to water shall be understood to mean reagent water as defined by Types II or III of Specification D 1193.

6.3 Acetone, 99.9 % purity.

6.4 Congo Red Paper.

8. Reagent Chemicals, American Chemical Society Specifications, American Chemical Society, Washington, DC. For suggestions on the testing of reagents not listed by the American Chemical Society, see Analar Standards for Laboratory Chemicals, BDH Ltd., Poole, Dorset, U.K., and the United States Pharmacopeia and National Formulary, U.S. Pharmaceutical Convention, Inc. (USPC), Rockville, MD.
6.5 Detergent.9
6.6 Isobutanol, 99.9 % minimum purity.
6.7 Isooctane.
6.8 Nitric Acid, concentrated.
6.9 Nitric Acid, 5-M. Dilute 160 mL concentrated nitric acid to 500 mL with water.
6.10 Potassium Chloride, primary standard.
6.11 Potassium Chloride Solution, saturated.
6.12 Scouring Powder, cleanser.
6.13 Silver Nitrate, 99.99 % minimum purity.
6.14 Silver Nitrate Solution, 0.01 N, standardized to
0.1 %.

NOTE 1—This solution may be obtained as follows:
(1) Purchase from a laboratory supply company, (2) Weigh to four
places, 1.680 to 1.720 g silver nitrate, transfer quantitatively into a
1000-mL volumetric flask, make to mark with water, and mix well.

Normality of solution = \[
\frac{\text{Weight AgNO}_3}{169.9}
\]
or (3) Dissolve 8.5 g silver nitrate in 500 mL water to give a 0.1 N
solution. Weigh 0.09 to 0.10 g of dried (105°C) potassium chloride to the
nearest 0.1 mg into a 250-mL electrolytic beaker, add 100 mL of water
and a stirring bar. While stirring, titrate with the silver nitrate solution.

Normality of AgNO_3 solution = \[
\frac{\text{Weight KCl} \times 0.0746 \times mL \text{AgNO}_3}{0.0746 \times mL \text{AgNO}_3}
\] Pipet 50.00 mL of the solution into a 500-mL volumetric flask, dilute to
mark with water, and mix well. Divide the calculated normality of the
0.1 N solution by 10 to give the normality of final AgNO_3 solution.

6.15 Sodium Biphenyl Reagent.10 The reagent is packed
in 18-mL vials that contain 13 to 15 mg of active sodium
each.
6.16 Toluene, 99.9 % minimum purity.

7. Hazards
7.1 A material, such as styrene, which is polymerized by
sodium biphenyl can cause a violent reaction and should
never be used as the sample.
7.2 Consult current OSHA regulations and suppliers’
Material Safety Data Sheets, and local regulations for all
materials used in this test method.

8. Sampling
8.1 Refer to Practice D 3437 for proper sampling and
handling of liquid hydrocarbons analyzed by this test
method.

9. Electrode Preparation
9.1 Clean the surface of the silver electrode with mild
detergent and scouring powder, and rinse with water.
9.2 Immerse the electrode in the saturated potassium
chloride solution until the electrode tip turns light gray.
9.3 Rinse well with water and attach to the titrimeter.
9.4 Repeat the electrode preparation when the silver
chloride film begins to peel from the surface, or if the film
becomes discolored.

9 Detergent such as Alconox available from Fisher Scientific, 1600 W. Glendale
Ave., Itasca, IL 60143, Catalog No. 04-322, has been found satisfactory for this
purpose.
10 Sodium biphenyl reagent, available from South Western Analytical Chemi-
cals, P.O. Box 483, Austin TX 78767, Catalog No. 500, “Organic Halogen
Reagent,” or equivalent has been found suitable for this purpose.
containing the isooctane. After shaking, allow the phases to separate and drain the aqueous phase into the beaker containing the first water extract.

10.8 Test the aqueous solution with Congo red paper, and if it does not test acidic, add 5-N nitric acid dropwise with stirring until the test paper turns dark blue.

10.9 Evaporate the solution to about 30 mL on a hot plate.

NOTE 5—Caution—Loss of chloride may result if the solution is boiled or evaporated below 25 mL.

10.10 Allow the solution to cool, and add 100 mL of acetone. Titrate the solution potentiometrically with standard 0.01 N silver nitrate solution and determine the volume of titrant used to reach the end point.

10.11 Determine a blank for each group of samples, using all the reagents including as many vials of sodium biphenyl as were used in the analysis of a sample. Follow all the operations of the analysis, except omit the specimen itself.

11. Procedure for Inorganic Chloride

11.1 Follow the procedure in Section 10 but without adding the sodium biphenyl reagent to either the sample or the blank.

12. Procedure for Organic Chloride

12.1 Follow the procedures given in Sections 10 and 11 to determine the total and inorganic chlorides. Subtract the inorganic from the total chloride to give the organic chloride.

13. Calculation

13.1 Calculate either the total or inorganic chloride as follows:

\[
\text{Chloride, mg/kg} = \frac{35.500 (A - B)}{VD} N
\]

where:

\[
A = \text{volume of titrant for aqueous phase, mL},
\]

\[
B = \text{volume of titrant for blank, mL},
\]

\[
N = \text{normality of silver nitrate solution},
\]

\[
V = \text{volume of sample, mL},
\]

\[
D = \text{density or relative density of sample}.
\]

13.2 Calculate organic chloride as follows:

\[
\text{Organic chloride, mg/kg} = T - I
\]

where:

\[
T = \text{total chloride, mg/kg and}
\]

\[
I = \text{inorganic chloride, mg/kg}.
\]

13.3 Report chloride to the nearest 0.1 mg/kg.

14. Precision and Bias

14.1 Precision:

14.1.1 The data for determining the precision of this test method are based on the analyses of toluene, ethylbenzene, and p-xylene that had been spiked with organic chloride compounds to the 1, 5, and 25 mg/kg chloride levels each.

14.1.2 The following criteria should be used to judge the acceptability (95 % probability) of results obtained by this test method. The criteria were derived from a round robin between three laboratories. Each sample was run on two different days in each laboratory.

14.1.2.1 Intermediate Precision (formerly called Reproducibility)—Results in the same laboratory should not be considered suspect unless they differ by more than 0.5 mg/kg.

14.1.2.2 Reproducibility—Results from each of two laboratories should not be considered suspect unless they differ by more than 0.9 mg/kg.

14.2 Bias—The bias of this test method cannot be determined because no referee method is available to determine the true value.

15. Keywords

15.1 aromatic hydrocarbons; chloride; cyclohexane; ethylbenzene; p-xylene; toluene

The American Society for Testing and Materials takes no position respecting the validity of any patent rights asserted in connection with any item mentioned in this standard. Users of this standard are expressly advised that determination of the validity of any such patent rights, and the risk of infringement of such rights, are entirely their own responsibility.

This standard is subject to revision at any time by the responsible technical committee and must be reviewed every five years and if not revised, either reapproved or withdrawn. Your comments are invited either for revision of this standard or for additional standards and should be addressed to ASTM Headquarters. Your comments will receive careful consideration at a meeting of the responsible technical committee, which you may attend. If you feel that your comments have not received a fair hearing you should make your views known to the ASTM Committee on Standards, 100 Barr Harbor Drive, West Conshohocken, PA 19428.

823