Standard Practice for
Containing Hydrocarbon Fluid Samples Using a Floating
Piston Cylinder

This standard is issued under the fixed designation D 3700; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (ε) indicates an editorial change since the last revision or reapproval.

1. Scope

1.1 This practice describes equipment and a procedure for obtaining a representative sample of a homogeneous hydrocarbon fluid and the subsequent preparation of that sample for laboratory analysis.

1.2 It is not possible, nor is it the intent of this practice, to provide a procedure that will be applicable for all sampling situations. It is strongly recommended that the samples be obtained under the supervision of a person knowledgeable in the phase behavior of hydrocarbon systems and experienced in all sampling operations.

1.3 This practice does not include recommendations for the location of the sampling point in a line or vessel, although the importance of the proper sampling location cannot be over-emphasized.

1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. For specific hazard statements, see 4.1 and Annex A2.

2. Summary of Practice

2.1 A hydrocarbon fluid sample is transferred under pressure from a source to a moving piston cylinder. The piston-type cylinder is designed to collect fluid samples by displacing a pressurizing fluid (usually an inert gas) at sampling pressure. The piston serves as a barrier between the sample and the inert gas which maintains the integrity of the sample by preventing the selective absorption of sample components in the pressurizing fluid as is possible in conventional displacement techniques. The method provides for a 20% inert gas volume for safe storage and transport of the sample.

3. Significance and Use

3.1 The objective of any sampling operation is to secure, in a suitable container, an adequate portion of hydrocarbon fluid under pressure having the same composition as the stream being sampled.

3.2 Particular emphasis should be given to the necessity of obtaining accurate, representative samples for analysis since those analyses, regardless of the care and accuracy of the laboratory test, can be useless if the samples are not valid.

4. Hazards

4.1 Safety Precautions:

4.1.1 Warning—Sampling hydrocarbon fluids can be hazardous. Persons responsible for obtaining samples should be familiar with and adhere to safe practices for handling flammable fluid under pressure.

4.1.2 Disassembly of the piston cylinder for maintenance presents a special hazard. Should either end cap be removed while pressure is on the cylinder, the end caps and the piston can be ejected with such force as to cause serious injury to personnel and damage to adjacent equipment. The following steps are recommended for disassembly:

4.1.2.1 Precaution—Clamp the piston cylinder firmly to a steady work surface.

4.1.2.2 Vent both ends of the cylinder to atmospheric pressure before attempting to remove either end cap.

4.1.2.3 Clear the area at either end of the cylinder before loosening the end plug.

4.1.2.4 Provide a mechanical plunger to dislodge the piston from the cylinders. Do not use fluid pressure.

4.2 Technical Precautions:

4.2.1 A certain amount of information about a sample is necessary before it can be intelligently handled in the laboratory. Absolutely essential are the sample source, sample date, cylinder identification, sample pressure and temperature, ambient temperature, type of analysis required, and the sampling method used. There can be additional related facts such as field-determined results and operating conditions which will assist in the evaluation of the analytical data. This information should accompany the filled sample cylinder.

4.2.2 If the hydrocarbon fluid samples are to be transported by common carrier within the United States, the sample containers must meet the specifications and be labeled according to the Hazardous Materials Regulations of the Department of Transportation.

4.2.3 Containers must be thoroughly cleaned prior to sampling with an appropriate volatile solvent, for example, petroleum naphtha followed by acetone, and evacuated to remove traces of the solvent. The use of detergent/water solutions or steam is not recommended.

5. Apparatus

5.1 Container, shown in Fig. 1 as Cylinder X, constructed of metal tubing, honed, and polished on the inside surface. The cylinder is closed with threaded end caps to provide access to remove and service the moving piston. The end caps are drilled and tapped for valves. The cylinder is
designed to exceed the maximum pressure anticipated during sampling and to be resistant to materials being sampled, the pressurizing fluid, the cleaning solvents, and the expected corrosives. The volume of the cylinder will depend on the amount of sample needed for the laboratory analysis.

5.1.1 The cylinder contains a moving piston. The piston is equipped with O-rings, TFE-fluorocarbon rings, or other devices to affect a leak-free seal between the sample and the pressurizing fluid, and to allow for the free movement of the piston within the cylinder. The use of guide rings is recommended to ensure smooth piston travel. The piston and sealing device must be resistant to the sample, the pressurizing fluid, the cleaning solvents, and expected corrosives.

5.1.2 All valves and safety devices must meet the appropriate material and pressure specifications.

5.2 Displacement Container—This container, Fig. 1, Cylinder Y, shall be fabricated from metal tubing, be designed to meet the same pressure requirements as the piston cylinder, and have a volume of no more than 80 % of the pressurizing volume of the piston cylinder (80 % of piston cylinder volume minus the volume of the piston).

5.3 Transfer Lines, Valves, and Gages—The transfer system shall be designed to exceed the maximum anticipated pressure and be resistant to all expected corrosives. The transfer lines should have a minimum diameter of 6.35 mm (1/4 in.) and be as short as is practical, see Fig. 1. The use of filters and dryers is discouraged.

6. Laboratory Preparation

6.1 The following procedure is recommended for liquid-phase samples:

6.1.1 Check the sample pressure on inert gas end, Valve D. The sample pressure should equal the sample source pressure corrected for the laboratory ambient temperature.

6.1.2 Connect the external pressure source of inert gas to Valve D and adjust the sample pressure equal to the saturation pressure of the sample at the laboratory ambient temperature plus a minimum of 1380 kPa (200 psi).

6.1.3 Rock the sample cylinder to ensure that the sample is homogeneous.

6.1.4 Place the cylinder in a horizontal position. The sample is now ready to transfer for analysis. The pressure described in 6.1.2 must be maintained on the sample during the transfer operation.

6.1.5 For use with gaseous phase samples, refer to Annex A1.

7. Sampling Procedure

7.1 Use the displacement cylinder technique for the liquid phase samples.

7.1.1 With the sample side of the piston cylinder evacuated (from cleaning operation) and Valve C closed, fill the displacement end with an inert gas to approximately (68.9 kPa) (10 psi) above the sampling pressure. Close Valve D.

7.1.2 Connect piston Cylinder X to sample Source A and displacement Cylinder Y to piston cylinder as shown in Fig. 1. Fill the displacement cylinder with air at atmosphere pressure.

7.1.3 With Valve E closed, open Valve D and observe pressure on Gage N. Adjust pressure N to equal pressure M by slowly venting inert gas through Valve E. Close Valve E.

7.1.4 With Valve E closed, open Valve D and observe pressure on Gage N. Adjust pressure N to equal pressure M by slowly venting inert gas through Valve E. Close Valve E.

7.1.5 With Valve E closed, slowly open Valve C to full open. There should be no pressure drop indicated on Gage N.

7.1.6 Close Valve D. Open Valve E and vent pressure at
atmosphere through Valve F. Close Valve F.

7.1.7 Slowly open Valve D allowing inert gas to flow into Cylinder Y. Observe Gage M so as not to allow pressure M to drop. Continue operation until pressure N equals pressure M. At this point, a volume equal to Cylinder Y has been displaced from Cylinder X by the hydrocarbon fluid sample. Sample Cylinder X now contains 80 volume % of sample leaving sufficient inert gas space to ensure safe storage and transport.


7.1.9 Do not take outage or reduce pressure on piston cylinder. Check Valves C and D for leaks, plug valves to protect threads, prepare sample information tag, and box for transport.

8. Keywords

8.1 floating piston cylinder; hydrocarbon fluid sampling; LP-gas; sampling

ANNEXES

(Mandatory Information)

A1. GAS-PHASE SAMPLING

A1.1 The piston cylinder method is believed to be applicable for both liquid-phase and gaseous-phase samples. However, while the technique has been successfully used for liquid samples, there is no experience obtaining gas-phase samples.

A1.2 The technique for obtaining gas-phase samples would be identical to the procedure described in Section 7.

A1.3 The technique for the laboratory preparation of a gas phase sample is somewhat different from that described in Section 6. The following procedure is recommended for the laboratory preparation of gas-phase samples:

A1.3.1 Check sample pressure on inert gas end, Valve D. The sample pressure should equal the sample source pressure corrected for laboratory ambient temperature.

A1.3.2 Heat the sample cylinder for a minimum of 1 h at the hydrocarbon dew point (if known) or the sample source temperature, plus 114°C (200°F).

A1.3.3 If the gas sample is known to be “dry” (does not form condensation on cooling by expansion), the sample is now ready to transfer for analysis. If the sample is known to be “wet” (partially condenses upon cooling or by a variation in pressure), the sample pressure must be maintained on piston cylinder during transfer by adding inert gas, Valve D, from external pressure source. All gases of unknown composition or exceeding 345 kPa (500 psi) sample source pressure should be treated as “wet” gases.

A1.3.4 The transfer line from the sample cylinder to analytical instrument should be heat-traced.

A1.4 Some piston-type cylinders are fabricated from nonmagnetic materials such as the 300 series of stainless steels and the piston from magnetic carbon steel. With this type of cylinder construction, the progress of the piston movement during sample entry can be followed by placing a small magnet on the outside surface of the cylinder. This technique eliminates the need for the displacement container and simplifies the sampling procedure. The following procedure is recommended:

A1.4.1 With the sample side of piston cylinder evacuated from the cleaning operation and Valve C closed, fill the displacement end, Valve D, with inert gas to sampling pressure. Close Valve D.

A1.4.2 With Valves B and C closed, open sample source Valve A to full open position. Observe sample source pressure on Gage M. Crack fitting to Valve C and purge line. Do not allow Pressure M to drop below sample pressure. Tighten the fitting.

A1.4.3 Check pressure of inert gas side, Valve D, and adjust to equal Pressure M.

A1.4.4 Slowly open Valve C to full open. There should be no pressure drop at Gage N.

A1.4.5 Crack Valve D allowing inert gas to purge to atmosphere. Do not allow Pressure M to drop below sampling pressure. Continue purge until the piston has moved 80 % of the length of the cylinder as indicated by the magnet locator. Close Valves D, C, and A. Open B and disconnect piston cylinder from sample source.

A1.4.6 Do not take outage or reduce pressure on piston cylinder. Check Valves C and D for leaks, plug valves to protect threads, prepare sample information tag, and box for transport.
A2. PRECAUTIONARY STATEMENTS

A2.1 Flammable Liquefied Gases

A2.1.1 Vapors may cause flash fires.
A2.1.2 Keep away from heat, sparks, and open flame.
A2.1.3 Keep container closed.
A2.1.4 Use with adequate ventilation.
A2.1.5 Avoid buildup of vapors and eliminate all sources of ignition, especially nonexplosive electrical devices and heaters.
A2.1.6 Avoid prolonged breathing of vapor or spray mist.
A2.1.7 Avoid prolonged or repeated skin contact.

The American Society for Testing and Materials takes no position respecting the validity of any patent rights asserted in connection with any item mentioned in this standard. Users of this standard are expressly advised that determination of the validity of any such patent rights, and the risk of infringement of such rights, are entirely their own responsibility.

This standard is subject to revision at any time by the responsible technical committee and must be reviewed every five years and if not revised, either reapproved or withdrawn. Your comments are invited either for revision of this standard or for additional standards and should be addressed to ASTM Headquarters. Your comments will receive careful consideration at a meeting of the responsible technical committee, which you may attend. If you feel that your comments have not received a fair hearing you should make your views known to the ASTM Committee on Standards, 1916 Race St., Philadelphia, PA 19103.