Designation: D 3235 – 93

Standard Test Method for
Solvent Extractables in Petroleum Waxes

This standard is issued under the fixed designation D 3235; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (ε) indicates an editorial change since the last revision or reapproval.

1. Scope

1.1 This test method covers the determination of solvent extractables in petroleum waxes.

1.2 The values stated in acceptable metric units are to be regarded as the standard. The values in parentheses are for information only.

1.3 This standard does not purport to address all of the safety problems, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

2. Referenced Documents

2.1 ASTM Standards:
D 740 Specification for Methyl Ethyl Ketone
D 841 Specification for Nitration Grade Toluene
D 1078 Test Method for Distillation Range of Volatile Organic Liquids
D 1218 Test Method for Refractive Index and Refractive Dispersion of Hydrocarbon Liquids
D 1364 Test Method for Water in Volatile Solvents (Fischer Reagent Titration Method)
D 1613 Test Method for Acidity in Volatile Solvents and Chemical Intermediates Used in Paint, Varnish, Lacquer and Related Products
E 1 Specification for ASTM Thermometers
E 128 Test Method for Maximum Pore Diameter and Permeability of Rigid Porous Filters for Laboratory Use

2.2 IP Standard:
Colour, Lovibond, IP 17, Method B

3. Significance and Use

3.1 The solvent extractables in a wax may have significant effects on several of its properties such as strength, hardness, flexibility, scuff resistance, coefficient of friction, coefficient of expansion, melting point, and staining characteristics. Whether these effects are desirable or undesirable depends on the intended use of the wax.

4. Summary of Test Method

4.1 The sample is dissolved in a mixture consisting of 50 volume % methyl ethyl ketone and 50 volume % toluene. The solution is cooled to -32°C (-25°F) to precipitate the wax, then filtered. The solvent extractables content is determined by evaporating the solvent from the filtrate and weighing the residue.

5. Apparatus

5.1 Filter Stick and Assembly, consisting of a 10-mm diameter sintered glass filter stick of 10 to 15 μm maximum pore diameter as determined by the method in the Appendix, provided with an air pressure inlet tube and delivery nozzle. It is provided with a ground-glass joint to fit a 25 by 170-mm test tube. The dimensions for a suitable filtration assembly are shown in Fig. 1.

NOTE 1—A metallic filter stick may be employed if desired. A filter stick made of stainless steel and having a 12.7-mm (0.50-in.) disk of 10 to 15 nm maximum pore diameter, as determined by Test Method E 128, has been found to be satisfactory. The metallic apparatus is inserted into a 25 by 150-mm test tube and held in place by means of a cork.

5.2 Cooling Bath, consisting of an insulated box with 25.4-mm (1.00-in.) holes in the center to accommodate any desired number of test tubes. The bath may be filled with a suitable medium such as kerosene, and may be cooled by circulating a refrigerant through coils, or by using solid carbon dioxide. A suitable cooling bath to accommodate three test tubes is shown in Fig. 2.

5.3 Dropper Pipet, provided with a rubber bulb, and calibrated to deliver 0.5 ± 0.05 g of molten wax.

5.4 Transfer Pipet, calibrated to deliver 15 ± 0.06 mL.

5.5 Air Pressure Regulator, designed to supply air to the filtration assembly (8.5) at sufficient pressure to give an even flow of filtrate. Either a conventional pressure-reducing valve or a mercury bubbler-type regulator has been found satisfactory. The latter type, illustrated in Fig. 3, consists of a 250-mL glass cylinder and a T-tube held in the cylinder by means of a rubber stopper grooved at the sides to permit the escape of excess air. The volume and pressure of the air supplied to the filtration assembly is regulated by the depth to which the T-tube is immersed in mercury at the bottom of the cylinder. Absorbent cotton placed in the space above the mercury prevents the loss of mercury by spattering. The air

2 Annual Book of ASTM Standards, Vol 06.03.

3 Annual Book of ASTM Standards, Vol 05.01.

4 Annual Book of ASTM Standards, Vol 05.03.

508

Copyright © 1998 by ASTM International
www.astm.org
pressure regulator is connected to the filter stick and assembly by means of rubber tubing.

5.6 Thermometers, two, having a range as shown below and conforming to the requirements as prescribed in Specification E 1 or in the specifications for IP Standard Thermometers. One thermometer is required for the cold bath and a second thermometer is required for the sample solution.

<table>
<thead>
<tr>
<th>Thermometer Number</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASTM 71F</td>
<td>-35 to +70°F</td>
</tr>
<tr>
<td>IP 72C</td>
<td>-32 to +21°C</td>
</tr>
<tr>
<td>IP 72F</td>
<td>-35 to +70°F</td>
</tr>
</tbody>
</table>

5.7 Weighing Bottles, conical in shape and glass-stoppered, having a capacity of 15 mL.

5.8 Evaporation Assembly, consisting of an evaporating cabinet and connections, essentially as illustrated in Fig. 4, and capable of maintaining a temperature of 35 ± 1°C (95 ± 2°F) around the evaporation flasks. Construct the jets with an inside diameter of 4 ± 0.2 mm for delivering a stream of clean, dry air vertically downward into the weighing bottle. Support each jet so that the tip is 15 ± 5 mm above the surface of the liquid at the start of the evaporation. Supply air at the rate of 2 to 3 L/min per jet, purified by passage through a tube of 1-cm bore packed loosely to a height of 20 cm with absorbent cotton. Periodically check the cleanliness of the air by evaporating 4 mL of the solvent mixture described in 6.3 by the procedure specified in 8.5. When the residue does not exceed 0.1 mg, the evaporation equipment is operating satisfactorily.

Note 2—Investigations by the European World Federation have indicated that improved precision may be achieved by individually calibrating each nozzle to deliver a flow rate of 2 to 3 L/min.

5.9 Analytical Balance, capable of reproducing weights to 0.1 mg. The sensitivity should be adjusted so that 0.1 mg will deflect the pointer one half division on the pointer scale.

5.10 Wire Stirrer—A piece of stiff iron or Nichrome wire of about 0.9 mm in diameter (No. 20 B&S or 20 swg), 250 mm long. A 10-mm diameter loop is formed at each end, and the loop at the bottom end is bent so that the plane of the loop is perpendicular to the wire.

6. Solvent

6.1 Methyl Ethyl Ketone, conforming to Specification D 740, or to Table 1.

6.2 Toluene, conforming to Specification D 841.

6.3 Solvent Mixture—Prepare a mixture of 50 volume % methyl ethyl ketone and 50 volume % toluene.
6.4 Store the solvent mixture over anhydrous calcium sulfate (5 weight % of the solvent). Filter prior to use.

7. Sample

7.1 Obtain a representative portion by melting the entire sample and stirring thoroughly. This is necessary because the extractables may not be distributed uniformly throughout the solidified sample.

8. Procedure

8.1 Melt the representative sample in a beaker, using a water bath or oven maintained at 70 to 100°C (160 to 210°F). As soon as the wax is completely melted, thoroughly mix by stirring. Preheat the dropper pipet in order to prevent the solidification of wax in the tip, and withdraw a 0.5-g portion of the sample as soon as possible after the wax has melted. Hold the pipet in a vertical position, and carefully transfer its contents into a clean, dry test tube previously weighed to the nearest 1 mg (Note 3). Swirl the test tube so as to coat the bottom evenly with wax. This permits more rapid solution later. Allow the test tube to cool, and weigh to the nearest 1 mg.

Note 3—The weight of a test tube which is cleaned by means of solvent will not vary to a significant extent. Therefore, a tare weight may be obtained and used repeatedly.

8.2 Pipet 15 ml of the solvent mixture into the test tube and place the latter just up to the level of its contents in a hot water or steam bath. Heat the solvent-wax mixture, stirring up and down with the wire stirrer, until a homogeneous solution is obtained. Exercise care to avoid loss of solvent by prolonged boiling.

Note 4—Very high-melting wax samples may not form clear solutions. Stir until the undissolved material is well dispersed as a fine cloud.

8.2.1 Plunge the test tube into an 800-mL beaker of ice water and continue to stir until the contents are cold.
Remove the stirrer. Remove the test tube from the ice bath, wipe dry on the outside with a cloth, and weigh to the nearest 0.1 g.

Note 5—During this operation the loss of solvent through vaporization should be less than 1%. The weight of the solvent is, therefore, practically a constant, and, after a few samples are weighed, this weight can be used as a constant factor.

8.3 Place the test tube containing the wax-solvent slurry in the cooling bath, which is maintained at \(-34.4 \pm 1^\circ C\) \((-30 \pm 2^\circ F)\). During this chilling operation stir the contents of the tube by means of a thermometer placed in the tube. It is important that stirring by means of the thermometer be almost continuous, in order to maintain a slurry of uniform consistency as the wax precipitates. Do not allow the wax to set up on the walls of the cooling vessel nor permit any lumps of wax crystals to form. Continue stirring until the temperature reaches \(-31.7 \pm 0.3^\circ C\) \((-25 \pm 0.5^\circ F)\).

8.4 Remove the thermometer from the tube and allow it to drain momentarily into the tube, then immediately immerse in the mixture the clean, dry filter stick, which has previously been cooled by placing it in a test tube and holding at \(-34.4 \pm 1^\circ C\) \((-30 \pm 2^\circ F)\) in the cooling bath for a minimum of 10 min. Seat the ground-glass joint of the filter so as to make an airtight seal. Place an unstoppered weighing bottle, previously weighed together with the glass stopper to the nearest 0.1 mg, under the delivery nozzle of the filtration assembly.

Note 6—Take every precaution to ensure the accuracy of the weight of the stoppered weighing bottle. Prior to determining this weight, rinse the clean, dry weighing bottle and stopper with the solvent mixture described in 6.3, wipe dry on the outside with a cloth, and place in the evaporation assembly to dry for about 5 min. Then remove the weighing bottle and stopper, place near the balance, and allow to stand for 10 min prior to weighing. Stopper the bottle during this cooling period. Once the weighing bottle and stopper have been dried in the evaporation assembly, lift only with forceps. Take care to remove and replace the glass stopper with a light touch.

8.5 Apply air pressure to the filtration assembly and immediately collect about 4 mL of filtrate in the weighing bottle. Release the air pressure to permit the liquid to drain back slowly from the delivery nozzle. Remove the weighing bottle immediately, and stopper and weigh to the nearest 10 mg without waiting for it to come to room temperature. Unstopper the weighing bottle and place it under one of the jets in the evaporation assembly maintained at \(35 \pm 1^\circ C\) \((95 \pm 2^F)\), with the air jet centered inside the neck, and the tip 15 \(\pm 5\) mm above the surface of the liquid. After the solvent has evaporated, which usually takes less than 30 min, remove the bottle, stopper, and place near the balance. Allow to stand for 10 min and weigh to the nearest 0.1 mg. Repeat the evaporation procedure, using 5 min evaporation periods, until the loss between successive weighings is not over 0.2 mg.

9. Calculation

9.1 Calculate the amount of extractables in the wax as follows:

\[
\text{Solvent extractables, weight \%} = 100 \frac{AC}{BD}
\]

where:

- \(A\) = weight of extractables residue, g,
- \(B\) = weight of wax sample, g,
- \(C\) = weight of solvent, g, obtained by subtracting weight of test tube plus wax sample (8.1) from weight of test tube and contents (8.2), and
- \(D\) = weight of solvent evaporated, in g, obtained by subtracting weight of weighing bottle plus extractables residue from weight of weighing bottle plus filtrate (8.5).

10. Report

10.1 Report the result as solvent extractables, weight %, ASTM Test Method D 3235. If the result is negative, report as zero.
11. Precision and Bias

11.1 The precision of this test method as determined by statistical examination of interlaboratory results is as follows:

11.1.1 **Repeatability**—The difference between two test results, obtained by the same operator with the same apparatus under constant operating conditions on identical test material would, in the long run, in the normal and correct operation of the test method, exceed the following values only in one case in twenty:

<table>
<thead>
<tr>
<th>Range</th>
<th>Repeatability</th>
</tr>
</thead>
<tbody>
<tr>
<td>15 to 55%</td>
<td>2%</td>
</tr>
</tbody>
</table>

11.1.2 **Reproducibility**—The difference between two single and independent results obtained by different operators working in different laboratories on identical test material would, in the long run, in the normal and correct operation of the test method, exceed the following values only in one case in twenty:

<table>
<thead>
<tr>
<th>Range</th>
<th>Reproducibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>15 to 55%</td>
<td>5%</td>
</tr>
</tbody>
</table>

11.2 The procedure in this test method has no bias because the value of solvent extractables can be defined only in terms of a test method.

12. Keywords

12.1 petroleum waxes; solvent extractables; wax
APPENDIX
(Nonmandatory Information)

X1. TEST METHOD OF TEST FOR MEASUREMENT OF MAXIMUM PORE DIAMETER OF RIGID POROUS FILTERS

X1.1 Scope
X1.1.1 This method covers the determination of the acceptability of porous filter sticks used for filtration in Method D 3235. This method establishes the maximum pore diameter and also provides a means of detecting and measuring changes which occur from continued use.

X1.2 Terminology
X1.2.1 Definition
X1.2.2 maximum pore diameter—the diameter in nanometres of the largest opening in the filter.

NOTE X1.1—It is recognized that the maximum pore diameter as defined herein does not necessarily indicate the physical dimensions of the largest pore in the filter. It is further recognized that the pores are highly irregular in shape. Because of the irregularity in shape and other phenomena characteristic of filtration, a filter may be expected to retain all particles larger than the maximum pore diameter as defined and determined herein, and will generally retain particles which are much smaller than the determined diameter.

X1.3 Summary of Test Method
X1.3.1 The filter is cleaned and wetted with water. It is then immersed in water and air pressure is applied against its upper surface until the first bubble of air passes through the filter. The maximum pore diameter is calculated from the surface tension of water and the applied pressure.

X1.4 Apparatus
X1.4.1 Manometer, mercury filled and readable to 0.5 mm.
X1.4.2 Air Supply, clean and filtered.
X1.4.3 Air Pressure Regulator, needle-valve type.
X1.4.4 Drying Oven.

X1.5 Procedure
X1.5.1 Clean the filter sticks by soaking in concentrated hydrochloric acid, and then wash them with distilled water. Rinse with acetone, air dry, and place in drying oven at 220°F (105°C) for 30 min.
X1.5.2 Thoroughly wet the clean filter to be tested by soaking it in distilled water.
X1.5.3 Assemble the apparatus as shown in Fig. X1.1. Apply pressure slowly from a source of clean air.
X1.5.4 Immerse the filter just below the surface of the water.

NOTE X1.2—If a head of liquid exists above the surface of the filter, the back pressure produced must be deducted from the observed pressure.
X1.5.5 Increase the air pressure to 10 mm below the acceptable pressure limit and then at a slow uniform rate of about 3 mm Hg/min until the first bubble passes through the filter. This can be conveniently observed by placing the beaker or test tube over a mirror. Read the manometer when the first bubble passes off the underside of the filter.

X1.6 Calculation
X1.6.1 Calculate the pore diameter as follows:

\[D = \frac{2180}{p} \]

where:
\[D = \text{pore diameter, nm, and} \]
\[p = \text{manometer reading, mm Hg.} \]

NOTE X1.3—From this equation, pressure corresponding to the upper and lower limits of the specified pore diameters can be calculated. These pressures may be used for acceptance testing.