Standard Test Method for Trace Impurities in Monocyclic Aromatic Hydrocarbons by Gas Chromatography

This standard is issued under the fixed designation D 2360; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (ε) indicates an editorial change since the last revision or reapproval.

This test method has been approved for use by agencies of the Department of Defense. Consult for listing in the DoD Index of Specifications and Standards for the specific year of issue that has been adopted by the Department of Defense.

1. Scope

1.1 This test method covers the determination of the total nonaromatic hydrocarbons, and trace monocyclic aromatic hydrocarbons in the purity of toluene and mixed xylenes by gas chromatography.

1.2 Nonaromatic aliphatic hydrocarbons containing 1 through 10 carbon atoms (methane through decanes) can be detected by this test method at concentrations ranging from 10 mg/kg to 2.500 weight %.

1.2.1 A small amount of benzene in mixed xylenes may not be distinguished from the nonaromatics and the concentrations are determined as a composite.

1.3 Monocyclic aromatic hydrocarbon impurities containing 6 through 9 carbon atoms (benzene through C9 aromatics) can be detected by this test method at individual concentrations ranging from 10 mg/kg to 1.000 weight %.

1.4 The following applies to all specified limits in this standard: for purposes of determining conformance with this standard, an observed value or a calculated value shall be rounded off “to the nearest unit” in the last right-hand digit used in expressing the specification limit, in accordance with the rounding-off method of Practice E 29.

1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. For specific hazard statement, see Section 8.

2. Referenced Documents

2.1 ASTM Standards:
D 841 Specification for Nitration Grade Toluene
D 2306 Test Method for Cs Hydrocarbon Analysis by Gas Chromatography
D 3437 Practice for Sampling and Handling Liquid Cyclic Products
D 3797 Test Method for Analysis of o-Xylene by Gas Chromatography
D 3798 Test Method for Analysis of p-Xylene by Gas Chromatography
D 4492 Test Method for Analysis of Benzene by Gas Chromatography
D 5211 Specification for Xylenes for p-Xylene Feedstock
E 29 Practice for Using Significant Digits in Test Data to Determine Conformance with Specifications
E 260 Practice for Packed Column Gas Chromatography
E 355 Practice for Gas Chromatography Terms and Relationships
E 691 Practice for Conducting an Interlaboratory Test Program to Determine the Precision of Test Methods
E 1510 Practice for Installing Fused Silica Open Tubular Capillary Columns in Gas Chromatographs

2.2 Other Document:
OSHA Regulations, 29 CFR, paragraphs 1910.1000 and 1910.1200

3. Summary of Test Method

3.1 A known amount of an internal standard is added to the specimen that is then introduced into a gas chromatograph (GC) equipped with a flame ionization detector (FID). The peak area of each impurity and the internal standard is detected by this test method at individual concentrations ranging from 10 mg/kg to 1.000 weight %.

3.2 The determination of hydrocarbon impurities contained in toluene and mixed xylenes used as chemical intermediates and solvents is typically required. This test is suitable for setting specifications and for use as an internal quality control tool where aromatic monocyclic hydrocarbons are produced or are used. This test method is applicable for determining the impurities from the aromatic hydro-
carbon production process. Typical impurities are alkanes containing 1 to 10 carbon atoms, benzene, toluene, ethylbenzene (EB), xylenes, and aromatic hydrocarbons containing nine carbon atoms.

4.1.1 Refer to Test Methods D 3797, D 3798, and D 4492 for determining the purity of o-Xylene, p-Xylene, and benzene, respectively.

4.1.2 Refer to Test Method D 2306 for determining the C₉ aromatic hydrocarbon distribution in mixed xylenes.

4.2 Purity is commonly reported by subtracting the determined expected impurities from 100.00. However, a gas chromatographic analysis cannot determine absolute purity if unknown or undetected components are contained within the material being examined.

5. Interferences

5.1 The internal standard chosen must be satisfactorily resolved from any impurity and the product peak. A peak will be satisfactorily resolved from a neighboring peak if the distance from the valley to the baseline between the two peaks is not greater than 50 % of the peak height of the smaller of the two peaks.

5.2 In some cases for mixed xylenes, it may be difficult to resolve benzene from the nonaromatic hydrocarbons and therefore the concentrations are determined as a composite. In the event that the benzene concentration must be determined, an alternate method must be selected to ensure an accurate assessment of the benzene concentration.

6. Apparatus

6.1 Gas Chromatograph—Any instrument having a flame ionization detector that can be operated at the conditions given in Table 1. The system should have sufficient sensitivity to obtain a minimum peak height response for 10 mg/kg n-butylbenzene of twice the height of the signal to background noise.

6.2 Columns—Both capillary and packed columns containing a stationary phase of cross-linked polyethylene glycol have been found satisfactory. The column must give satisfactory resolution of the internal standard from the solvent and the impurity peaks, and should be such that benzene is eluted between n-nonane and n-decane. Table 1 contains a description of a column that has been found satisfactory.

6.3 Recorder—Electronic integration is recommended.

6.4 Microsyringe, 10 and 50, and 500-µL capacity.

6.5 Volumetric Flask, 50-mL capacity.

7. Reagents

7.1 Purity of Reagent—Reagent grade chemicals shall be used in all tests. Unless otherwise indicated, it is intended that all reagents shall conform to the specifications of the Committee on Analytical Reagents of the American Chemical Society, where such specifications are available.

7.2 Carrier Gas—Chromatographic grade helium is recommended.

7.3 High Purity p-Xylene, 99.999 weight % or greater purity.

7.3.1 Most p-xylene is available commercially at a purity less than 99.9 % and can be purified by recrystallization. To prepare 1.9 L of high purity p-xylene, begin with approximately 3.8 L of material and cool in an explosion-proof freezer at −10 ± 5°C until approximately 1/2 to 3/4 of the p-xylene has frozen. This should require about 5 h. Remove the sample and decant the liquid portion. The solid portion is the purified p-xylene. Allow the p-xylene to thaw and repeat the crystallization step on the remaining sample until the p-xylene is free of contamination as indicated by gas chromatography.

7.4 Pure Compounds, for calibration, shall include n-nonane, benzene, toluene, ethylbenzene (EB), o-xylene and cumene. The purity of all reagents should be >99 weight %. If the purity is less than 99 %, the concentration and identification of impurities must be known so that the composition of the standard can be adjusted for the presence of the impurities.

7.4.1 Internal Standard—n-butylbenzene (NBB) is the recommended internal standard of choice, however, other compounds may be found acceptable provided they meet the criteria as defined in Section 5.

8. Hazards

8.1 Consult current OSHA regulations, supplier’s Material Safety Data Sheets, and local regulations for all materials used in this test method.

9. Sampling

9.1 Sample the material in accordance with Practice D 3437.

10. Preparation of Apparatus

10.1 Follow manufacturer’s instructions for mounting and conditioning the column into the chromatograph and adjusting the instrument to the conditions described in Table

TABLE 1 Instrumental Parameters

<table>
<thead>
<tr>
<th>Detector</th>
<th>Flame Ionization</th>
</tr>
</thead>
<tbody>
<tr>
<td>Column:</td>
<td>fused silica</td>
</tr>
<tr>
<td>Tubing</td>
<td></td>
</tr>
<tr>
<td>Stationary phase</td>
<td>cross-linked polyethylene glycol[^a]</td>
</tr>
<tr>
<td>Film thickness, µ</td>
<td>0.25</td>
</tr>
<tr>
<td>Length, m</td>
<td>60</td>
</tr>
<tr>
<td>Diameter, mm</td>
<td>0.32 ID</td>
</tr>
<tr>
<td>Temperatures:</td>
<td></td>
</tr>
<tr>
<td>Injector, °C</td>
<td>270</td>
</tr>
<tr>
<td>Detector, °C</td>
<td>300</td>
</tr>
<tr>
<td>Oven:</td>
<td></td>
</tr>
<tr>
<td>Initial, °C</td>
<td>60</td>
</tr>
<tr>
<td>Time 1, min</td>
<td>10</td>
</tr>
<tr>
<td>Final, °C</td>
<td>150</td>
</tr>
<tr>
<td>Rate, °C/min</td>
<td>5</td>
</tr>
<tr>
<td>Time 2, min</td>
<td>10</td>
</tr>
<tr>
<td>Carrier gas</td>
<td>helium</td>
</tr>
<tr>
<td>Flow rate, mL/min</td>
<td>1.0</td>
</tr>
<tr>
<td>Split ratio</td>
<td>100:1</td>
</tr>
<tr>
<td>Sample size, µL</td>
<td>1.0</td>
</tr>
<tr>
<td>Analysis time, min</td>
<td>30</td>
</tr>
<tr>
<td>Linear velocity @ 145°C, cm/s</td>
<td>20</td>
</tr>
</tbody>
</table>

[^a]: Polyethylene glycol such as Carbowax 20 m available from Union Carbide Chemical Co., or most chromatographic suppliers, has been found suitable for this purpose.

[^5]: Reagent Chemicals, American Chemical Society Specifications, American Chemical Society, Washington, DC. For suggestions on the testing of reagents not listed by the American Chemical Society, see Analytical Standards for Laboratory Chemicals, BDH Ltd., Poole, Dorset, U.K., and the United States Pharmacopeia and National Formulary, U.S. Pharmaceutical Convention, Inc. (USPC), Rockville, MD.
allowing sufficient time for the equipment to reach
equilibrium. See Practices E 260 and E 355 and E 1510 for
additional information on gas chromatography practices and
terminology.

11. Calibration

11.1 Prepare a synthetic mixture of high purity p-xylene
with representative impurities. The volume of each hydro-
carbon impurity must be measured to the nearest 0.1 µL and
all liquid reference compounds must be brought to the same
temperature before mixing. Refer to Table 2 for an example
of a calibration blend. The nonaromatic fraction is repre-
sented by n-nonane, while o-xylene represents the xylene
fraction. Cumene will represent the aromatic hydrocarbons
containing nine carbon atoms or greater (C₉ aromatics).

11.2 Using the exact volumes and densities in Table 2,
calculate the weight percent concentration for each impurity in
the calibration blend as follows:

\[C_i = \frac{(D_i)(V_i)}{(V_p)(D_p)}(100) \]

where:

- \(D_i \) = density of impurity \(i \) from Table 2,
- \(V_i \) = volume of impurity \(i \), mL,
- \(D_p \) = density of p-xylene from Table 2,
- \(V_p \) = volume of p-xylene, mL, and
- \(C_i \) = concentration of impurity \(i \), weight percent.

11.3 Into a 50-mL volumetric flask, add 50.0 µL of
\text{m}-butylbenzene (NBB) to 50.00 mLs of the calibration blend
and mix well. Assuming a density of 0.857 for the calibration
blend and 0.856 for NBB, the resulting NBB concentration
will be 0.100 weight %, as determined from the equation in 11.2.

11.3.1 All solutions and reference compounds must be
brought to the same temperature, preferably 25°C, prior to
adding the internal standard.

11.4 Inject the resulting solution from 11.3 into the
chromatograph. A typical chromatogram is illustrated in Fig.
1.

11.5 Determine the response factor for each impurity
relative to NBB by measuring the area under each peak and
calculate the relative response factor as follows:

\[RRF_i = \frac{(A_i)(C_s)}{(A_s)(C_i)} \]

where:

- \(RRF_i \) = response factor for impurity \(i \) relative to the internal
 standard,
- \(A_i \) = peak area of impurity, \(i \),
- \(A_s \) = peak area of the internal standard, NBB,
- \(C_s \) = concentration of the internal standard, NBB, weight
 percent, and
- \(C_i \) = concentration of impurity \(i \), as calculated in 11.2,
 weight percent.

11.6 Calculate the response factors to the nearest 0.001.

12. Procedure

12.1 Bring the internal standard and the sample to be
analyzed to identical temperatures, preferably 25°C. Make
sure that the temperature of the sample is consistent with
that of the calibration standard prepared in Section 11. Pipet
50.0 µL of internal standard into a 50-mL volumetric flask
containing 50.00 mLs of sample. Mix well.

12.2 Depending upon the actual chromatograph’s oper-
ating conditions, inject an appropriate amount of sample
into the instrument. Make sure that the injection amount is
consistent with those conditions used to meet the criteria in
6.1.

TABLE 2 Preparation of Calibration Blend

<table>
<thead>
<tr>
<th>Compound</th>
<th>Density^A</th>
<th>Recommended Volume (µL)</th>
<th>Resulting Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Volume Percent</td>
</tr>
<tr>
<td>p-Xylene</td>
<td>0.857</td>
<td>50.00 µL</td>
<td>99.72</td>
</tr>
<tr>
<td>Benzene</td>
<td>0.874</td>
<td>10.0</td>
<td>0.020</td>
</tr>
<tr>
<td>Toluene</td>
<td>0.862</td>
<td>10.0</td>
<td>0.020</td>
</tr>
<tr>
<td>Ethylbenzene</td>
<td>0.863</td>
<td>50.0</td>
<td>0.100</td>
</tr>
<tr>
<td>o-Xylene</td>
<td>0.876</td>
<td>50.0</td>
<td>0.100</td>
</tr>
<tr>
<td>Cumene</td>
<td>0.857</td>
<td>10.0</td>
<td>0.020</td>
</tr>
<tr>
<td>n-Nonane</td>
<td>0.714</td>
<td>10.0</td>
<td>0.020</td>
</tr>
</tbody>
</table>

^A Density at 25°C. Values obtained from Physical Constants of Hydrocarbons
\(C_1 \) to \(C_{10} \), ASTM Publication Data Series 4A, 1971.
12.3 Measure the area of all peaks except the major component(s). Measurements on the sample must be consistent with those made on the calibration blend. The nonaromatic fraction includes all peaks up to toluene (except for the peak assigned as benzene). Sum together all the nonaromatic peaks and report as a total area. The C9 aromatics fraction includes cumene and all peaks emerging after o-xylene. Sum together all the C9 aromatic peaks and report as a total area.

12.4 Figure 2 illustrates the analysis of Specification D 841 toluene. Figure 3 illustrates the analysis of Specification D 5211 mixed xylenes.

13. Calculations

13.1 Calculate the weight percent concentration of the total nonaromatics and each impurity as follows:

\[C_i = \frac{(A_i)(RFF)}{(A_s)} \]

(3)

13.2 Calculate the volume concentration of the total nonaromatics, total C9 aromatics and each trace aromatic as follows:

\[V_i, \% = \frac{(C_i)}{(D_i)} \]

(4)

where:

\(V_i, \% = \) concentration of impurity i, volume percent, and

\(D_i = \) density of impurity i from Table 2.

13.3 Calculate the purity of the sample as follows:

\[\text{purity, weight percent} = 100.00 - C_i \]

(5)

where:

\(C_i = \) total concentration of all impurities, weight percent.

14. Report

14.1 Report the following information:

14.1.1 Individual impurities to the nearest 0.001 %.

14.1.2 Concentrations of impurities less than 0.001 %, report as <0.001 %, and consider as 0.000 in summation of impurities.

14.1.3 Total impurities to the nearest 0.01 %, and

14.1.4 Purity as "purity (by GC)" to the nearest 0.01 %.

15. Precision and Bias

15.1 Precision—The following criteria should be used to judge the acceptability of the 95 % probability level of the results obtained by this test method. The criteria was derived from the round-robin between seven different laboratories. The data from five laboratories was used in calculating the precision data for toluene. Two samples were analyzed. Each sample was run twice in two days by two different operators. Results of the interlaboratory study were calculated and analyzed using Practice E 691.

15.1.2 The numbers in parentheses shown in the left hand column of Table 3 are reported average concentrations of the impurities.

15.2 Intermediate Precision, (formerly called Repeatability)—Duplicate results by the same operator should not be considered suspect unless they differ by more than ± the amount shown in Table 3. All values are in weight percent.

15.3 Reproducibility—The results between two laboratories should not be considered suspect unless they differ by more than ± the amount shown in Table 3. All values are in weight percent.

15.4 Bias—Since there was no accepted reference material available at the time of interlaboratory testing, no statement on bias can be made at this time. All values are in weight percent.

16. Keywords

16.1 impurities; purity; toluene; xylenes

6 Supporting data are available from ASTM Headquarters. Request RR: D16-1020.
The American Society for Testing and Materials takes no position respecting the validity of any patent rights asserted in connection with any item mentioned in this standard. Users of this standard are expressly advised that determination of the validity of any such patent rights, and the risk of infringement of such rights, are entirely their own responsibility.

This standard is subject to revision at any time by the responsible technical committee and must be reviewed every five years and if not revised, either reapproved or withdrawn. Your comments are invited either for revision of this standard or for additional standards and should be addressed to ASTM Headquarters. Your comments will receive careful consideration at a meeting of the responsible technical committee, which you may attend. If you feel that your comments have not received a fair hearing you should make your views known to the ASTM Committee on Standards, 100 Barr Harbor Drive, West Conshohocken, PA 19428.