Standard Test Methods for
Aniline Point and Mixed Aniline Point of Petroleum Products
and Hydrocarbon Solvents

This standard is issued under the fixed designation D 611; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (ε) indicates an editorial change since the last revision or reapproval.

These test methods were adopted as a joint ASTM-IP standard in 1964.
These test methods have been approved for use by agencies of the Department of Defense and for listing in the DoD Index of Specifications and Standards.

1 NOTE—Keywords were added in May 1993.

1. Scope

1.1 These test methods cover the determination of the aniline point of petroleum products and hydrocarbon solvents. Method A is suitable for transparent samples with an initial boiling point above room temperature and where the aniline point is below the bubble point and above the solidification point of the aniline-sample mixture. Method B, a thin-film method, is suitable for samples too dark for testing by Method A. Methods C and D are for samples that may vaporize appreciably at the aniline point. Method D is particularly suitable where only small quantities of sample are available. Method E describes a procedure using an automatic apparatus suitable for the range covered by Methods A and B.

1.2 These test methods also cover the determination of the mixed aniline point of petroleum products and hydrocarbon solvents having aniline points below the temperature at which aniline will crystallize from the aniline-sample mixture.

1.3 This standard does not purport to address all of the safety problems, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. Specific precautionary statements are given in Sections 7.1 and 7.3.

2. Referenced Documents

2.1 ASTM Standards:
D 1015 Test Method for Freezing Points of High-Purity Hydrocarbons
D 1217 Test Method for Density and Relative Density (Specific Gravity) of Liquids by Bingham Pycnometer
D 1218 Test Method for Refractive Index and Refractive Dispersion of Hydrocarbon Liquids
D 1500 Test Method for ASTM Color of Petroleum Products (ASTM Color Scale)
D 2700 Test Method for Knock Characteristics of Motor and Aviation Fuels by the Motor Method
E 1 Specification for ASTM Thermometers

3. Terminology

3.1 Definitions:
3.1.1 aniline point—the minimum equilibrium solution temperature for equal volumes of aniline and sample.
3.1.2 mixed aniline point—the minimum equilibrium solution temperature of a mixture of two volumes of aniline, one volume of sample, and one volume of n-heptane of specified purity.

4. Summary of Test Methods

4.1 Specified volumes of aniline and sample, or aniline and sample plus n-heptane, are placed in a tube and mixed mechanically. The mixture is heated at a controlled rate until the two phases become miscible. The mixture is then cooled at a controlled rate and the temperature at which two phases separate is recorded as the aniline point or mixed aniline point.

5. Significance and Use

5.1 The aniline point (or mixed aniline point) is useful as an aid in the characterization of pure hydrocarbons and in the analysis of hydrocarbon mixtures. Aromatic hydrocarbons exhibit the lowest, and paraffins the highest values. Cycloparaffins and olefins exhibit values that lie between those for paraffins and aromatics. In homologous series the aniline points increase with increasing molecular weight. Although it occasionally is used in combination with other physical properties in correlative methods for hydrocarbon analysis, the aniline point is most often used to provide an
TABLE 1 Requirements for n-Heptane

<table>
<thead>
<tr>
<th>ASTM Motor Octane Number</th>
<th>ASTM Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0 ± 0.2</td>
<td>D 2700</td>
</tr>
</tbody>
</table>

Density at 20°C, g/mL 0.68830 ± 0.00015 D 1217
Refractive index, nD20 1.38770 ± 0.00015 D 1218
Freezing point, °C −90.710 min D 1015
† Distillation, 50 % recovered at 1.013 bar (760 mm Hg), °C 98.427 ± 0.025 A
Differential, 80 % recovered minus n-heptane 0.020 max
20 % recovered, °C 7.2 Calcium Sulfate, anhydrous.
7.3 n-Heptane (Warning—See Note 7.), conforming to the requirements listed in Table 1.5

NOTE 5—The aniline point of aniline and n-heptane determined with automatic apparatus (Method E) shall be 69.3 ± 0.2°C (156.7°F ± 0.4°F) when corrected in accordance with the equation in Section A5.2.1.

NOTE 6—As an alternative to distilling the aniline on the day of use, the aniline may be distilled as described in 7.1, collecting the distillate in ampoules, sealing the ampoules under vacuum or dry nitrogen, and storing in a cool dark place for future use. In either case, rigid precaution must be taken to avoid contamination from atmospheric moisture (Note 2). It is believed that under these conditions the aniline will remain unchanged for a period exceeding 6 months.

7.2 Calcium Sulfate, anhydrous.
7.3 n-Heptane (Warning—See Note 7.), conforming to the requirements listed in Table 1.5

8. Sample

8.1 Dry the sample by shaking vigorously for 3 to 5 min with about 10 volume % of a suitable drying agent such as anhydrous calcium sulfate or anhydrous sodium sulfate. Reduce the viscosity of viscous samples by warming to a temperature below that which would cause the loss of light ends or the dehydration of the drying agent. Remove any suspended drying agent by use of a centrifuge or by filtration. Heat samples containing separated wax until they are homogeneous and keep heated during filtration or centrifugation to ensure against separation of wax. When suspended water is visibly present and the sample material is known to dissolve less than 0.03 mass % of water, the use of a centrifuge for the removal of suspended water is an acceptable procedure.

9. Procedure for Aniline Point

9.1 The following methods, to be used as applicable, are covered as follows:

9.1.1 Method A, described in detail in Annex A1, is applicable to clear samples or to samples not darker than No. 9.1.2 Method B, described in detail in Annex A2, is applicable to light-colored samples, moderately dark samples, and to very dark samples. It is suitable for samples that are too dark to be tested by Method A.

9.1.3 Method C, described in detail in Annex A3, is applicable to clear samples or to samples not darker than No. 6.5 ASTM color, as determined by Test Method D 1500, having initial boiling points well above the expected aniline point.

9.1.4 Method D, described in detail in Annex A4, is applicable to light-colored samples, moderately dark samples, and to very dark samples. It is suitable for samples that are too dark to be tested by Method A.

9.1.5 Method E, described in detail in Annex A5, is applicable to clear samples or to samples not darker than No. 6.5 ASTM color, as determined by Test Method D 1500, having initial boiling points sufficiently low as to give incorrect aniline point readings by Method A, for example, aviation gasoline.

NOTE 5—These requirements for n-heptane are identical, except for tetraethyl lead, with those prescribed in the 1987 Annual Book of ASTM Standards, Vol 05.04.
9.1.4 Method D, described in detail in Annex A4, is applicable to the same type of sample as Method C. It is particularly useful when only limited quantities of sample are available.

9.1.5 Method E is applicable when using automatic apparatus in accordance with the instructions in Annex A5.

10. Procedure for Mixed Aniline Point

10.1 This procedure is applicable to samples having aniline points below the temperature at which aniline crystallizes from the mixture. Pipet 10 mL of aniline (Warning: See Note 3), 5 mL of sample, and 5 mL of n-heptane into a clean, dry apparatus. Determine the aniline point of the mixture by Method A or B as described in Annex A1 or A2.

11. Report

11.1 If the range of three successive observations of the aniline point temperature is not greater than 0.1°C (0.2°F) for light-colored samples or 0.2°C (0.4°F) for dark samples, report the average temperature of these observations, corrected for thermometer calibration errors, to the nearest 0.05°C (0.1°F) as the aniline point.

11.2 If such a range is not obtained after five observations, repeat the test using fresh quantities of aniline and sample in a clean, dry apparatus, and if consecutive temperature observations show a progressive change, or if the range of observations is greater than the repeatability given in 12.1, report the method as being inapplicable.

12. Precision and Bias

12.1 The precision of these test methods as obtained by statistical examination of interlaboratory test results is as follows:

12.1.1 Repeatability—The difference between successive test results (two average temperatures obtained in a series of observations as described in Section 11) obtained by the same operator with the same apparatus under constant operating conditions on identical test material, would in the long run, in the normal and correct operation of the test method, exceed the following values only in one case in twenty:

<table>
<thead>
<tr>
<th>Observation Type</th>
<th>Repeatability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clear, light-colored samples</td>
<td>± 0.16°C (± 0.3°F)</td>
</tr>
<tr>
<td>Moderately dark to very dark samples</td>
<td>± 0.3°C (± 0.6°F)</td>
</tr>
</tbody>
</table>

12.1.2 Reproducibility—The difference between two single and independent results, obtained by different operators, working in different laboratories on identical test material, would in the long run, in the normal and correct operation of the test method, exceed the following values only in one case in twenty:

<table>
<thead>
<tr>
<th>Observation Type</th>
<th>Reproducibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clear, light-colored samples</td>
<td>± 0.5°C (± 0.9°F)</td>
</tr>
<tr>
<td>Moderately dark to very dark samples</td>
<td>± 1.0°C (± 1.8°F)</td>
</tr>
</tbody>
</table>

12.3 The precision of this test was not obtained in accordance with Committee D-2 Research Report RR:D02-1007, “Manual on Determining Precision Data for ASTM Methods on Petroleum Products and Lubricants.”

13. Keywords

13.1 aniline point; aromatics; mixed aniline point

ANNEXES

(Mandatory Information)

A1. METHOD A

A1.1 Apparatus

A1.1.1 The apparatus shown in Fig. A1.1 shall consist of the following:

A1.1.1.1 Test Tube, approximately 25 mm in diameter and 150 mm in length, made of heat-resistant glass.

A1.1.1.2 Jacket, approximately 37 to 42 mm in diameter and 175 mm in length, made of heat-resistant glass.

A1.1.1.3 Stirrer, manually operated, metal, approximately 2 mm in diameter (14 B&S gage) metal wire as shown in Fig. A1.1. A concentric ring shall be at the bottom, having a diameter of approximately 19 mm. The length of the stirrer to a right-angle bend shall be approximately 200 mm. The right-angle bend shall be approximately 55 mm long. A glass sleeve approximately 65 mm in length of 3-mm inside diameter shall be used as a guide for the stirrer. Any suitable mechanical device for operating the stirrer as specified is an approved alternative for the manual operation.

A1.2 Procedure

A1.2.1 Clean and dry the apparatus. Pipet 10 mL of aniline (Warning—see 7.1) and 10 mL of the dried sample (8.1) into the test tube fitted with stirrer and thermometer. If the material is too viscous for pipetting, weigh to the nearest 0.01 g a quantity of the sample corresponding to 10 mL at room temperature. Center the thermometer in the test tube so that the immersion mark is at the liquid level, making sure that the thermometer bulb does not touch the side of the tube. Center the test tube in the jacket tube. Stir the mixture
A2. Method B

A2.1 Apparatus

A2.1.1 Thin-Film Apparatus, made of heat-resistant glass and stainless steel, conforming to the dimensions given in Fig. A2.1. A suggested assembly is shown in Fig. A2.2.

A2.2 Procedure

A2.2.1 Clean and dry the apparatus. Pipet 10 mL of aniline (Warning—see Note 3) and 10 mL of the dried sample (8.1) into the tube fitted with pump-stirrer and thermometer. If the material is too viscous for pipetting, weigh to the nearest 0.01 g a quantity of sample corresponding to 10 mL at room temperature. Place the thermometer in the tube so that the contraction chamber is below the liquid level and so that the mercury bulb does not touch the side of the tube. Assemble the apparatus as shown in Fig. A2.2.

A2.2.2 Adjust the speed of the pump to produce a continuous stream of the oil-aniline mixture in the form of a thin film flowing over the light well. With extremely dark oils, operate the pump slowly and lower it so that the delivery tube nearly touches the top of the light well, so as to obtain a continuous film thin enough to permit observation of the aniline point. Adjust the voltage on the lamp until just enough light is given for the filament to be visible through the film. Raise the temperature of the mixture at a rate of 1 to 2°C (2.0 to 3.5°F)/min until the aniline point has just been passed, as denoted by a definite, sudden brightening of the lamp filament, and by the disappearance of the more or less opalescent condition of the film (Note A2.1). Discontinue heating and adjust the lamp voltage so that the filament appears clear and distinct but not uncomfortably bright to the eye. Adjust the temperature of the bath so that the sample-aniline mixture cools at a rate of 0.5 to 1.0°C (1.0 to 1.8°F)/min and note the appearance of the film and light filament. Record as the aniline point the temperature at which a second phase appears as evidenced by the reappearance of the opalescent condition of the film (usually causing a halo to appear around the lamp filament) or by a sudden dimming of the lamp filament, or both. At temperatures above the aniline point the edges of the light filament appear clear and distinct. At the aniline point temperature a halo or haze forms around the filament, replacing the distinct lines of the filament edge with lines that appear cloudy or hazy in appearance. Further darkening of the cloud over the filament becomes cloudy throughout (Note A1.1). This temperature, and not the temperature of separation of small amounts of material, is the minimum equilibrium solution temperature.

Note A1.1—The true aniline point is characterized by a turbidity that is so cloudy as to obscure the thermometer bulb in reflected light.

A2.2.3 If the aniline-sample mixture is completely miscible at room temperature, substitute a non-aqueous cooling bath for the heating source, allow to cool at the rate specified in A1.2.2, and determine the aniline point as described.

A2.2.4 Repeat the observation of aniline point temperature by heating and cooling repeatedly until a report as directed in Section 11 can be made.
occurs at lower temperature, but is not to be confused with the aniline point.

NOTE A2.1—For those making the test for the first time, the following procedure may be helpful: Make preliminary operational adjustments and tests using a colorless sample-aniline mixture, and observing changes taking place in the body of the liquid and film. Make rough tests with dark oils to become familiar with the appearance of the film and light source as the mixture passes from the clear state above the aniline point, to the translucent state below. If the sample is such that there is difficulty in observing the exact point of the phase change, make experiments with the sample, using various intensities of light and paying particular attention to the appearance of the light in the immediate vicinity of the lamp filament.

A2.2.3 Repeat the observation of aniline point temperature by heating and cooling repeatedly until a report as directed in Section 11 can be made.
A3. METHOD C

A3.1 Apparatus

A3.1.1 Aniline-Point Tube, of heat-resistant glass, of the shape and dimensions shown in Fig. A3.1, and fitted internally with a thin-walled glass thermometer tube, sealed at the lower end. The latter tube accommodates a tight-fitting cork stopper carrying the thermometer, the bulb of which rests on a cork ring or disk placed at the bottom of the tube; the tube contains sufficient light transformer oil to cover the bulb of the thermometer. The inner tube is held in the top of the aniline-point tube by a tightly fitting stopper, and a clamp is provided to hold the stopper in position to prevent loss of vapor from the sample.

Note A3.1—Any other suitable arrangement, such as a screwed plastic gland carrying the thermometer, that will prevent the loss of vapor from the apparatus, may be used. In such cases it may be possible to omit the thermometer tube and immerse the thermometer bulb in the aniline-sample mixture.

A3.1.2 Guard, of stout metal gauze and surrounding the aniline point tube. It should preferably be combined with the clamp for holding the thermometer tube in place.

A3.2 Procedure

A3.2.1 Clean and dry the apparatus. Pipet 5 mL of aniline (Note A3.2 Precaution see Note 3) and 5 mL of the dried sample (8.1), both cooled to a temperature at which the sample may be measured without loss of vapor. Close the tube by means of the stopper and fit the thermometer tube centrally so that the bottom is 5 mm from the bottom of the aniline point tube. Clamp the stopper in position and attach the guard.

Note A3.2: Precaution—Put on goggles of safety glass and plastic gloves impervious to aniline.

A3.2.2 Follow the procedure described in A1.2.2 and A1.2.3 but mix the sample and aniline by shaking the tube. If the rate of change of temperature is greater than 1°C (2°F)/min when the aniline point is being approached, place the tube in a jacket that has previously been warmed or cooled to an appropriate temperature.

A3.2.3 Repeat the observation of aniline point by heating and cooling repeatedly until a report as directed in Section 11 can be made.

A4. METHOD D

A4.1 Apparatus

A4.1.1 Bulb, 1.5 to 2.0-mL capacity, blown from heat-resistant glass tubing, 5 mm in external diameter and 3 mm in internal diameter.

A4.1.2 Guard, as for Method C.

A4.2 Procedure

A4.2.1 Dry the bulb thoroughly in an oven at 105 ± 5°C, allow it to cool to room temperature, and charge it by means of the pipets with 0.5 mL of aniline (Warning—see Note 3) and 0.5 mL of the dried sample (8.1). Cool the mixture thoroughly and rapidly draw out and seal the open end of the bulb at about 10 mm from the center of the bulb.

Note A4.1: Precaution—Put on goggles of safety glass and plastic gloves impervious to aniline.

A4.2.2 Attach the bulb to the thermometer by rubber bands so that the bulb is adjacent to the thermometer bulb. Attach the mesh guard and follow the procedure described in A1.2.2 and A1.2.3 but mix the sample and aniline by shaking.

A4.2.3 Repeat the observation of aniline point temperature by heating and cooling repeatedly until a report as directed in Section 11 can be made.
A5. METHOD E

A5.1 Apparatus

A5.1.1 Automatic Aniline Point Apparatus, commercially available, using a modified thin film technique and direct heating of the sample-aniline mixture with electrical immersion heater. Detection of change of sample turbidity at the aniline point is by response of a photoelectric cell to collimated light directed through the thin film of sample.

A5.2 Procedure

A5.2.1 Determine the automatic aniline point in accordance with instructions provided with the apparatus. Correct the aniline point as follows:

Corrected aniline point = \(\frac{(X_a - A)}{B} \)

where:

- \(X_a \) = automatic aniline point,
- \(A \) and \(B \) = constants determined for each apparatus as described in A5.2.2.

NOTE A5.1—It has been established by cooperative tests that observed aniline points determined by some automatic apparatus are lower than the determinations by Methods A and B. The difference is greater for automatic apparatus when relatively high sample-cooling rates are used, and increases as the aniline point increases.

A5.2.2 Determine the aniline point by either Method A or Method B and also using the automatic apparatus for three or more samples with aniline points in each of the ranges 43 to 49°C (110 to 120°F), 60 to 66°C (140 to 150°F), and 77 to 82°C (170 to 180°F). Calculate the constants \(A \) and \(B \) by the least squares method by simultaneous solution of the following equations:

\[
\Sigma(X_a) = NA + B\Sigma(X_c)
\]

\[
\Sigma(X_aX_c) = A\Sigma(X_c) + B\Sigma(X_c^2)
\]

where:

- \(\Sigma(X_a) \) = sum of all aniline point data by automatic apparatus,
- \(\Sigma(X_c) \) = sum of all aniline point data by either Method A or B,
- \(\Sigma(X_c^2) \) = sum of the squares of all aniline point data by either Method A or B,
- \(\Sigma(X_aX_c) \) = sum of the products of aniline points determined by either Method A or B and by using the automatic apparatus for each sample, and
- \(N \) = number of samples.

NOTE A5.2—Cooperative data were obtained from five laboratories for five samples with aniline points in the range from 34 to 87°C (93 to 188°F). Constants \(A \) and \(B \) were calculated for the composite data as 0.79 and 0.991 respectively. Although a minimum number of nine samples is specified in this method, constants \(A \) and \(B \) in the preceding equation may be obtained with a slightly greater precision if data for a larger number of samples are used.

A6. PRECAUTIONARY STATEMENT

A6.1 n-Heptane

Warning—Flammable. Harmful if inhaled. Keep away from heat, sparks, and open flame. Keep container closed.

Use with adequate ventilation. Avoid prolonged breathing of vapor or spray mist. Avoid prolonged or repeated skin contact.

The American Society for Testing and Materials takes no position respecting the validity of any patent rights asserted in connection with any item mentioned in this standard. Users of this standard are expressly advised that determination of the validity of any such patent rights, and the risk of infringement of such rights, are entirely their own responsibility.

This standard is subject to revision at any time by the responsible technical committee and must be reviewed every five years and if not revised, either reapproved or withdrawn. Your comments are invited either for revision of this standard or for additional standards and should be addressed to ASTM Headquarters. Your comments will receive careful consideration at a meeting of the responsible technical committee, which you may attend. If you feel that your comments have not received a fair hearing you should make your views known to the ASTM Committee on Standards, 100 Barr Harbor Drive, West Conshohocken, PA 19428

158