An Introduction to the Development and Use of the Master Curve Method

Donald E. McCabe, John G. Merkle, and Kim Wallin

ASTM Stock Number: MNL52
Foreword

This publication, An Introduction to the Development and Use of the Master Curve Method, was sponsored by Committee E08 on Fatigue and Fracture and E10 on Nuclear Technology and Applications. It was authored by Donald E. McCabe, Consultant, Oak Ridge National Laboratory, Oak Ridge, Tennessee; John G. Merkle, Consultant, Oak Ridge National Laboratory, Oak Ridge, Tennessee; and Professor Kim Wallin, VTT Industrial Systems, Espoo, Finland. This publication is Manual 52 of ASTM's manual series.
Acknowledgments

The authors wish to acknowledge the Heavy-Section Steel Irradiation Program, which is sponsored by the Office of Nuclear Regulatory Research, US Nuclear Regulatory Commission, under interagency agreement DOE 1886-N695-3W with the US Department of Energy under contract DE-AC05-00OR22725 with UT Battelle, LLC, for supporting, in part, the preparation of this document. The authors also wish to express appreciation for the assistance provided by the ORNL-HSSI project manager, Dr. T. M. Rosseel, and for the manuscript preparation work of Ms. Pam Hadley and the graphics assistance of Mr. D. G. Cottrell.
Contents

1.0 Preface ... 1
1.1 Nomenclature ... 2

2.0 Background ... 5
 2.1 Historical Aspect .. 5
 2.2 Concept Discovery (Landes/Shaffer [12]) 6
 2.3 Engineering Adaptation (Wallin [17]) 8
 2.4 Application to Round Robin Data 10
 2.5 Master Curve .. 11
 2.5.1 Median Versus Scale Parameter Option 12
 2.5.2 Supporting Evidence 13

3.0 K_{jc} Data Validity Requirements 15
 3.1 Data Duplication Needs .. 15
 3.2 Specimen Size Requirements 15
 3.3 Limit on Slow-Stable Crack Growth, Δa_p 16

4.0 Test Specimens .. 18

5.0 Test Equipment .. 22
 5.1 Compact Specimen Fixtures 22
 5.2 Bend Bar Fixtures ... 22
 5.3 Clip Gages ... 23
 5.4 Cryogenic Cooling Chambers 23

6.0 Pre-Cracking and Side-Grooving of Specimens 26
 6.1 Pre-Cracking .. 26
 6.2 Side-Grooving .. 26

7.0 Test Practices ... 28

8.0 Fracture Toughness Calculations 30
 8.1 Calculation of J-Integral 30
 8.2 Calculation of J_p .. 30
8.3 Calculation of Je .. 30
8.4 Crack Mouth Data 32
8.5 Units of Measure 32

9.0 Determination of Scale Parameter, (Ko−Kmin) 33
9.1 Testing at One Appropriately Selected Test Temperature 33
9.2 Equations for the Scale Parameter 35
 9.2.1 All Valid Data at One Test Temperature 35
 9.2.2 Valid Plus Invalid Data at One Test Temperature 35

10.0 Determination of Reference Temperature, T₀ 36
 10.1 The Single Temperature Method 36
 10.2 The Multi-Temperature Method 36

11.0 Development of Tolerance Bounds 38
 11.1 Standard Deviation Method (E 1921-97) 38
 11.2 Cumulative Probability Method (E 1921-02) 39
 11.3 Margin Adjustment to the T₀ Temperature 40

12.0 Concepts Under Study 42
 12.1 Consideration of the Pre-Cracked Charpy Specimen 42
 12.2 Dealing with Macroscopically Inhomogeneous Steels 42
 12.2.1 A Maximum Likelihood Estimate for Random
 Homogeneity 44

13.0 Applications .. 46
 13.1 Example Applications 46
 13.2 Use of Tolerance Bounds 46
 13.3 Possible Commercial Applications 47
 13.4 Application to Other Grades of Steels 48
 13.5 Special Design Application Problems 48

References .. 51

Appendix ... 55

Index ... 65
Donald E. McCabe

Mr. McCabe is currently a consultant in the Metals & Ceramics Division of the Oak Ridge National Laboratory (ORNL). Although he graduated with a BS degree in Metallurgical Engineering at the University of Wisconsin, he decided to switch his interests to the new scientific discipline of fracture mechanics in 1960 and has participated in this field for 40 years. He has authored and co-authored more than 70 technical publications. He became active in ASTM committee work and has served as Secretary to the Executive Committee of E24 (now E08) for 13 years and as Chairman of the task group. Mr. McCabe has received the George R. Irwin Medal, the Award of Merit, the Richard L. Templin Award, and four Awards of Appreciation.

John G. Merkle

Mr. Merkle has over 40 years of experience in the fields of fracture mechanics and pressure vessel research. He worked on the Nuclear Regulatory Commission (NRC)-sponsored Heavy Section Steel Technology Program at the Oak Ridge National Laboratory (ORNL) and related projects from 1965 until his retirement in 1999. He continues to consult in the same fields at ORNL. Mr. Merkle has been a member of ASTM since 1967, serving as co-chairman of Task Group E08.08.03 while ASTM Standard E 1921 was being prepared and balloted. Mr. Merkle has a Master's degree in Civil Engineering from Cornell University, and his contributions to fracture mechanics have focused mainly on the development of physically based analytical representations of the elastic-plastic behavior of fracture toughness specimens and structural components. Mr. Merkle has received several awards from ASTM, including the George R. Irwin Medal, the Jerry L. Swedlow Lecture Award, and the ASTM Award of Merit. Mr. Merkle also participates actively in the work of Section XI of the American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code, pertaining to the in-service inspection and fracture mechanics evaluations for reactor pressure vessels and piping.

Dr. Kim Wallin

Dr. Kim Wallin, a research professor at VTT in Espoo, Finland, has been involved with different research topics related to experimental and theoretical fracture mechanics since 1982, and he has written more than 290 publications on the subject. Since 1993, he has held the position of research professor in fracture mechanics at VTT. He is responsible for the scientific level of the fracture mechanics research within VTT Industrial Systems. Additionally, he has had a leading role in numerous international co-operative projects dealing with advanced fracture mechanics. Dr. Wallin has been a member of ASTM International since 1991. He holds a Doctorate degree in Process and Materials Technology from the Helsinki University of Technology, where he also earned his Master of Science degree in Physical Metallurgy. Dr. Wallin's most significant scientific achievements have been connected to the theoretical modeling of brittle fracture and to the development of new engineering applications, above all in the context of the so-called "Master Curve" methodology. His research has led to a global change of the principle of brittle fracture assessment and has also given novel insight to the failure mechanisms in the case of ductile fracture.