basic rubber testing:

Selecting Methods for a Rubber Test Program

Editor: John S. Dick
Foreword

THIS PUBLICATION, Basic Rubber Testing: Selecting Methods for a Rubber Test Program, was sponsored by Committee D11 on Rubber and D24 on Carbon Black. This is Manual 39 in ASTM International’s manual series.
CHAPTER 1

Introduction—by John Dick
1.1 History
1.2 ASTM D11 Standards
1.3 Purpose
1.4 Economic Savings for Users and Producers Through Test Method Rationalization
1.5 Importance of Quality
1.6 Standard Target Values and "Tolerance Stack-up"
1.7 Testing Bias
1.8 What Makes for a Good Standard Test Method?
1.8.1 Accuracy
1.8.2 Repeatability
1.8.3 Reproducibility
1.8.4 Stability
1.8.5 Linearity
1.9 The Rubber Process
1.10 Raw Rubber and Compounding Ingredients
1.11 The Recipe

CHAPTER 2

General Test Methods—by John Dick
2.1 Introduction to the Rubber Test Laboratory
2.1.1 Compounding Ingredient Storage System
2.1.2 Weighing Systems
2.1.3 Mixer Systems
2.1.4 Curing Procedure
2.2 General Methods
2.2.1 Mooney Viscometer ASTM D 1646
2.2.1.1 Mooney Viscosity
2.2.1.2 Mooney Stress Relaxation Test 26
2.2.1.3 Measuring Pre-Vulcanization Characteristics 30
2.2.2 Oscillating Disk Curemeter ASTM D 2084 30
2.2.2.1 ODR Cure Test Parameters 34
2.2.3 Rotorless Curemeter ASTM D 5289 38
2.2.4 Rotorless Shear Rheometer ASTM D 6204 40
2.2.4.1 Elastic Torque (S’) 42
2.2.4.2 Viscous Torque (S") 42
2.2.4.3 Tangent δ (Delta) 43
2.2.4.4 Storage (Elastic) Modulus (G’) 43
2.2.4.5 Loss (Viscous) Modulus (G") 43
2.2.4.6 Dynamic Viscosity η’, η", η* 43
2.2.5 Tensile Properties ASTM D 412 47
2.2.6 After-Cure Dynamic Properties for Quality Assurance and Development ASTM D 6601 49
2.2.7 Other Cured Physical Property Measurements 50
2.2.7.1 Tear Resistance ASTM D 624 50
2.2.7.2 Air Oven Aging ASTM D 573 51
2.2.7.3 Goodrich Flexometer Heat Buildup ASTM D 623 52
2.2.7.4 Flex Cracking Resistance 53
2.2.7.5 Liquid Immersion Properties ASTM D 471 53
2.2.7.6 Compression Set ASTM D 395 54
2.2.7.7 Rubber Hardness ASTM D 2240 55
2.2.7.8 Abrasion Resistance ASTM D 2228 55
2.2.7.9 Low Temperature Properties ASTM D 1053 55
2.2.7.10 Ozone Resistance D 1171 56
2.2.8 The Standard Classification System for Rubber Products used in Automotive Applications ASTM D 2000 57

CHAPTER 3

Testing Natural Rubber—by Alek Vare 61
3.1 Introduction and History 61
3.2 Sampling and Sample Preparation by ASTM D 1485 63
3.3 Technical Grades and Basis for Classification by ASTM D 2227 64
3.4 Methods for Chemical Analysis of Natural Rubber by ASTM D 1278 65
3.4.1 Percent Dirt 66
3.4.2 Volatile Matter 66
3.4.3 Copper Content 66
3.4.4 Manganese Content 67
3.5 Plasticity Retention Index, ASTM D 3194 68
3.6 Color Index ASTM D 3157 69
3.7 Standard Test Method for Evaluation of Natural Rubber ASTM D 3184 69
3.8 New Standard Test Method for Characterizing Natural Rubber Grades—ASTM D 6204, Part B 70

CHAPTER 4

Testing Synthetic Rubber—by *Julia B. Zimmerman* 72

4.1 Synthetic Rubber History and Nomenclature 72
4.2 Consumer-Producer Agreement 73
4.3 Physical Tests for Synthetic Rubber 75
4.4 Standard Test Recipes and Test Procedures 77
4.5 Processability of SBR with the Mooney Viscometer 79
4.6 Chemical Tests for Synthetic Rubbers 80
 4.6.1 Organic Acids, Soap, Oil, Total Extractables 80
 4.6.1.1 Total Extractables 80
 4.6.1.2 Organic Acid and Soap 81
 4.6.1.3 Oil 81
 4.6.2 Volatile Matter 81
 4.6.3 Total and Water Soluble Ash 82
 4.6.4 Determination of Carbon Black in Masterbatch 82
 4.6.5 Percent Gel, Swelling Index, and Dilute Solution Viscosity 82
 4.6.6 Nitrogen Content of NBR (or HNBR) 85
4.6.7 Test Methods for HNBR 85
 4.6.7.1 Unsaturation of HNBR by Iodine Value 85
 4.6.7.2 Unsaturation of HNBR by Infrared Spectrophotometry 85
4.6.8 EPDM Tests 86
 4.6.8.1 Percent ENB or DCPD in EPDM Terpolymers 86
4.6.9 SBR Tests 86
 4.6.9.1 Bound Styrene in SBR 86
4.6.10 Tests for CIIR or BIIR 87
 4.6.10.1 Determination of Bromine in the Presence of Chlorine by Oxygen Combustion 87
4.6.11 General Comment on Determination of Metals in Polymers 88
CHAPTER 5

Testing Carbon Black—by Jeffery A. Melson

5.1 Introduction

5.1.1 How is Carbon Black Used?

5.1.2 What are Surface Area, Structure and Surface Activity—Why are they important?

5.2 Classification

5.2.1 Basis for Classification (D 1765)

5.3 Standard Reference Blacks

5.3.1 Validation of Test Method Precision and Bias (D 4821)

5.3.2 Improving Test Reproducibility Using ASTM Reference Blacks (D 3324)

5.4 Tests that Relate to Surface Area (Particle Size)

5.4.1 Iodine Adsorption Number (D 1510)

5.4.2 Nitrogen Adsorption

5.4.3 CTAB (Cetyltrimethylammonium Bromide) Surface Area (D 3765)

5.4.4 Primary Aggregate Dimensions from Electron Microscope Image Analysis (D 3849)

5.5 Tests which Relate to Structure (Aggregates and Agglomerates)

5.5.1 Oil Absorption Number (D 2414)

5.5.2 Oil Absorption Number of Compressed Sample (D 3493)

5.5.3 Compressed Volume Index (D 6086)

5.6 Pellet Quality

5.6.1 Pour Density (ASTM D 1513)

5.6.2 Pellet Size Distribution (ASTM D 1511)

5.6.3 Pelleted Fines and Attrition (ASTM D 1508)

5.6.4 Sieve Residue (ASTM D 1514)

5.6.5 Individual Pellet Hardness

5.6.5.1 Individual Pellet Hardness (ASTM D 3313)

5.6.5.2 Automated Individual Pellet Hardness (ASTM D 5239)

5.6.5.3 Mass Strength (D 1937)

5.7 Rubber Test Recipes and Properties

5.7.1 Carbon Black in Styrene-Butadiene Rubber—Recipe and Evaluation Procedure (ASTM D 3191) and Carbon Black Evaluation in Natural Rubber (ASTM D 3192)
CHAPTER 6

Testing Silica and Organosilanes—by Jeffery A. Melson

6.1 Introduction 105
6.2 Silica Types 105
 6.2.1 Silica Applications versus Carbon Black 106
 6.2.2 Classification 106
6.3 Surface Area 107
 6.3.1 Surface Area by BET Nitrogen Adsorption 107
 6.3.1.1 Surface Area by Single Point B.E.T. Nitrogen Adsorption (D 5604) 107
 6.3.1.2 Surface Area by Multipoint B.E.T. Nitrogen Adsorption (D 1993) 108
 6.3.2 Surface Area by CTAB (Cetyltrimethylammonium Bromide) 108
 6.3.2.1 CTAB (Cetyltrimethylammonium Bromide) Surface Area (D 6845) 108
6.4 Structure (Aggregates and Agglomerates) 108
 6.4.1 n-Dibutyl Phthalate Absorption Number (D 6854) 108
6.5 General Methods 109
 6.5.1 Volatiles (D 6738) 109
 6.5.2 pH Value (D 6739) 109
6.6 Organosilanes 109
 6.6.1 Determination of Residue on Ignition (D 6740) 109
 6.6.2 Determination of Sulfur in Silanes (D 6741) 109
 6.6.3 Silanes used in Rubber Formulations (bis-(triethoxysilylpropyl)sulfanes): Characterization by High Performance Liquid Chromatography—(D 6843) 110
 6.6.4 Silanes used in Rubber Formulations (bis-(triethoxysilylpropyl)sulfanes): Characterization by Gas Chromatography (D 6844) 110

CHAPTER 7

Testing Mineral Fillers for Use in Rubber—by John Dick

7.1 Ground Coal 111
 7.1.1 Particle Size 111
 7.1.2 Sieve Testing 113
 7.1.3 Ash 113
 7.1.4 Alpha Quartz 113
 7.1.5 Heat Loss (moisture) 114
CONTENTS

7.1.6 Acidity 114
7.1.7 Volatile Matter 114
7.1.8 Density 115
7.2 Titanium Dioxide 116
 7.2.1 Titanium Dioxide Purity 117
 7.2.2 pH Measurements 117
 7.2.3 Coarse Particles 117
 7.2.4 Moisture Content 118
 7.2.5 Rutile Content 118
 7.2.6 Tint Strength and Brightness 118
7.3 Clay 119
7.4 Natural Calcium Carbonate 121

CHAPTER 8

Oils, Plasticizers, and Other Rubber Chemicals—by John Dick 124
8.1 Rubber Processing and Extender Oils 124
 8.1.1 Aromaticity 124
 8.1.2 Average Molecular Weight 126
 8.1.3 Volatility 126
 8.1.4 Polar Compounds 126
 8.1.5 Asphaltenes 126
 8.1.6 Wax Content 127
8.1.7 ASTM Oil Classification 127
 8.1.8 ASTM Oil Tests 127
 8.1.8.1 Clay-Gel Analysis, A Column Chromatographic Method (D 2007) 127
 8.1.8.2 Viscosity-Gravity Constant (D 2501) 128
 8.1.8.3 Kinematic Viscosity (D 445) 129
 8.1.8.4 Aniline Point and Mixed Aniline Point (D 611) 129
 8.1.8.5 Pour Point (D 97) 129
 8.1.8.6 Acid and Base Number by Titration (D 974) 129
 8.1.8.7 API Gravity (D 1298) 130
 8.1.8.8 Color (D 1500) 132
 8.1.8.9 UV Absorbance (D 2008) 132
 8.1.8.10 Flash Point Open Cup (D 92) 132
8.2 Synthetic Plasticizers 132
 8.2.1 Standard Abbreviations 132
 8.2.2 Standard Test Methods 134
 8.2.2.1 Specific Gravity (D 70, D 891, and D 2111) 134
 8.2.2.2 Color (D 1209 and D 1544) 134
 8.2.2.3 Refractive Index (D 1218) 135
8.2.2.4 Saponification Value (D 1962) 135
8.2.2.5 Brookfield Viscosity (D 2196) 135
8.2.2.6 Heat Loss (D 2288) 136
8.2.2.7 Karl Fischer (E 203) 136
8.2.2.8 Flash Point Open Cup (D 92) 137

8.3 Curatives 137

8.3.1 Sulfur 138
8.3.1.1 Sulfur Insolubles (D 4578) 138
8.3.1.2 Percent Oil (D 4573) 141
8.3.1.3 Acidity (D 4569) 141
8.3.1.4 Wet Sieve (D 4572) 141
8.3.1.5 Percent Ash (D 4574) 141

8.3.2 Rubber Accelerators 141
8.3.2.1 Standard Abbreviations 145
8.3.2.2 Initial Melting Point (D 1519) 145
8.3.2.3 Wet Sieve (Similar to D 4572) 147
8.3.2.4 Percent Ash (D 4574) 149
8.3.2.5 Percent Heat Loss (D 4571) 149
8.3.2.6 Percent Moisture in Sulfenamides (D 4818) 150
8.3.2.7 Percent Insolubles in Sulfenamides (D 4934) 150
8.3.2.8 Assay for Sulfenamides (D 4936) 150
8.3.2.9 MBTS Assay (D 5051) 151
8.3.2.10 Assay for DPG and DOTG (D 5054) 151
8.3.2.11 MBT Assay (D 1991) 151

8.3.3 Zinc Oxide 151
8.3.3.1 American Process or Direct Type 152
8.3.3.2 French Process or Indirect Type 152
8.3.3.3 Secondary Zinc Oxide—Chemical Type 152
8.3.3.4 Secondary Zinc Oxide—Metallurgical 152
8.3.3.5 Zinc Oxide Treatment 152
8.3.3.6 Zinc Oxide Test Methods 153
8.3.3.6.1 Surface Area (D 3037 and D 4315) 153
8.3.3.6.2 Percent Lead and Cadmium (D 4075 and D 4315) 153
8.3.3.6.3 Percent Residue on 45 μm Sieve (D 4315) 153
8.3.3.6.4 Percent Heat Loss at 105°C (D 280) 153
8.3.3.6.5 Percent Sulfur (D 3280 and D 4315) 154
8.3.3.6.6 Percent Zinc Oxide Purity (D 3280 and D 4315) 154
8.3.3.6.7 Test Recipe (D 4620) 154

8.3.4 Stearic Acid 154
8.3.4.1 Iodine Value (D 1959) 156
8.3.4.2 Titer (D 1982) 157
8.3.4.3 Acid Value (D 1980) 157
8.3.4.4 Saponification Value (D 1962) 157
8.3.4.5 Percent Ash (D 1951) 158
8.3.4.6 Unsaponification Matter (D 1965) 158
8.3.4.7 Trace Metal (D 4075) 158

8.4 Antidegradants 158

8.4.1 Class I: p-Phenylenediamine (PPDs) 158
 8.4.1.1 Type I: N,N'-dialkyl-p-phenylenediamines 159
 8.4.1.2 Type II: N-alkyl-N'aryl-p-phenylenediamines 159
 8.4.1.3 Type III: N,N'-diaryl-p-phenylenediamines 160

8.4.2 Class 2 Trimethyl-dihydroquinolines (TMQs) 160

8.4.3 Class 3, Phenolics 160
 8.4.3.1 Type I: Monofunctional Phenols 160
 8.4.3.2 Type II: Bifunctional Phenols 160
 8.4.3.3 Type III: Multifunctional Phenols 160

8.4.4 Class 4, Alkylated Diphenylamines 160

8.4.5 Class 5, Aromatic Phosphites 161

8.4.6 Class 6, Diphenylamine-Ketone Condensates 161

8.4.7 Standard Abbreviations 161

8.4.8 Test Methods for Antidegradants 161
 8.4.8.1 Purity of p-Phenylenediamine Antidegradant by Gas Chromatography (D 4937) 161
 8.4.8.2 Purity of Phenolic Antioxidants 161
 8.4.8.3 Purity of TMQs, Alkylated Diphenylamines and Phosphite Antidegradants 163
 8.4.8.4 Volatile Materials for PPDs 163
 8.4.8.5 Percent Ash 163
 8.4.8.6 Softening Point 163
 8.4.8.7 Hydrolysis Stability 163

8.5 Protective Waxes 163

8.5.1 Test Methods 164
 8.5.1.1 Boiling Point, Determination by GC Distillation (D 2887) 164
 8.5.1.2 Melting Point and/or Congealing Point (D 87, D 938, D 3944, D 4419) 164
 8.5.1.3 Refractive Index (D 1747) 165
 8.5.1.4 Percent Oil (D 721) 165
 8.5.1.5 Viscosity (D 445) 166
 8.5.1.6 Color (D 1500) 166
 8.5.1.7 Needle Penetration (D 1321) 166
CHAPTER 9

Recycled Rubber—by Krishna C. Baranwal 169

9.1 Definition and Rubber Recycling Processes 169

9.1.1 Reclaiming 169
9.1.2 Ground Rubber 169
9.1.3 Cryogenic Ground Rubber 170
9.1.4 Wet Ground Rubber 170
9.1.5 "Devulcanization" Process 170
9.1.6 Need for Standards 170

9.2 Storage, QA Sampling and Test Plans 171

9.2.1 Material and Safety Data Sheets (MSDS) 171
9.2.2 Crumb Rubber Storage 171
9.2.3 Sampling and Test Plans 172

9.3 Test Methods 172

9.3.1 Particle Size (PS) and Particle Size Distribution (PSD) 172
9.3.2 Particle Size Classification (ASTM D 5603) 174
9.3.3 Chemical Analysis (ASTM D 5603) 174

9.3.3.1 Percent Extractables (ASTM D 297, Section 19) 174
9.3.3.2 Percent Ash (ASTM D 297, Section 35) 174
9.3.3.3 Percent Carbon Black (ASTM D 297, Section 39) 175
9.3.3.4 Percent Moisture Content (ASTM D 1509) or Heating Loss 175
9.3.3.5 Percent Natural Rubber Content (ASTM D 297, Section 53) 175
9.3.3.6 Percent Rubber Hydrocarbon (ASTM D 297) 175
9.3.3.7 Iron and Fiber Content (ASTM D 5603, Section 7) 176

9.4 Evaluation of Recycled Rubber in Compounds 176

CHAPTER 10

Standard Test Methods—Insuring High-Quality Output—
by Alan G. Veith 178

10.1 Introduction 178

10.2.1 Step 1—Planning 180
10.2.2 Step 2—Measurement Methodology: Selecting Test Methods 180

10.2.2.1 Precision 180
Preface

TODAY THERE IS A NEW initiative in the rubber industry, brought on by new quality programs such as Six Sigma, to reduce variation and eliminate quality problems significantly in the manufacture of a very wide scope of different rubber products. For example, the automotive manufacturers are beginning to design vehicles to last 150,000 miles with minimum maintenance. This severely challenges many rubber part manufacturers, perhaps more than other groups in the automotive supply base, to improve their quality and reduce variation.

One large source of product variation in the rubber industry can be non-uniformity of received raw rubber and other compounding ingredients. There are currently over 140 ASTM Standard Methods that are actively used to test these raw materials used in the rubber industry. The mixing process also is a very large source of variation in the factory. There are another 25 ASTM methods that are used to test the quality of mixed batches. This book is designed to be a practical guide to the rubber technologist in selecting the appropriate methods for use in a testing program of raw materials, compounding ingredients, or mixed stock.

This book characterizes each group of raw materials. It explains what are some of the important chemical and physical properties that should be used in making judgements on the quality of a raw material and its usability in the production plant. It gives a basic description of the test methods that are currently available. More importantly, this book compares and contrasts the advantages and disadvantages of selecting various test methods. However, this book is not a substitute for reading the actual ASTM method itself. This book will help the reader in deciding which ASTM methods should be selected for testing a given raw material or mixed stock. This information is important to assure that a rubber laboratory is running efficiently. In today’s business climate where testing resources are being restricted in many cases, it is vital that the most important tests be selected and that redundant testing be eliminated. Selecting the wrong tests wastes valuable resources and money.

John S. Dick
Award of Merit Recipients (continued)

<table>
<thead>
<tr>
<th>YEAR RECEIVED</th>
<th>AWARD RECIPIENT</th>
<th>ACHIEVEMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1982</td>
<td>Charles E. Tidd, Jr.</td>
<td>Was Chairman of D11, Rubber. Also contributed to Physical Testing (D11.10). Active with ISO TC45 as well</td>
</tr>
<tr>
<td>1984</td>
<td>William J. Holley</td>
<td>Very active with Synthetic Rubber standards (D11.23). Also active with ISO TC45</td>
</tr>
<tr>
<td>1987</td>
<td>Charles P. Gerstenmaier</td>
<td>Major contributions in the development of Carbon Black Test Methods. Also active in ISO TC45</td>
</tr>
<tr>
<td>1989</td>
<td>Rodney McGarry</td>
<td>Past Chairman of D24, Carbon Black. Major contributions in the development of Carbon Black Test Standards. Also active in ISO TC45</td>
</tr>
<tr>
<td>1989</td>
<td>Bobby Buffington</td>
<td>Major contributions in the development of Carbon Black Test Standards. Also active in ISO TC45</td>
</tr>
<tr>
<td>1993</td>
<td>Thomas H. Spurlock</td>
<td>Major contributions in the development of Carbon Black Test Methods</td>
</tr>
</tbody>
</table>

Distinguished Service Award

<table>
<thead>
<tr>
<th>YEAR RECEIVED</th>
<th>AWARD RECIPIENT</th>
<th>ACHIEVEMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1998</td>
<td>Peter Surette</td>
<td>For his work in D11 Rubber, including physical testing (D11.10), time-temperature dependent properties (D11.14)</td>
</tr>
<tr>
<td>1998</td>
<td>Julia Zimmerman</td>
<td>For her contributions in D11, Rubber, including Chemical Analysis (D11.11)</td>
</tr>
<tr>
<td>1998</td>
<td>John Bailey</td>
<td>For his activities in D24, Carbon Black, including his extensive statistical contributions</td>
</tr>
<tr>
<td>1998</td>
<td>Charles Gillingham</td>
<td>For his activities in D24, Carbon Black</td>
</tr>
<tr>
<td>1999</td>
<td>Clair Harmon</td>
<td>For his participation in D11, Rubber, including his involvement with Natural Rubber (D11.22)</td>
</tr>
<tr>
<td>1999</td>
<td>Paul Gatza</td>
<td>For his contributions to D11, Rubber, including physical testing, and rubber products</td>
</tr>
<tr>
<td>1999</td>
<td>Jack Thompson</td>
<td>For his achievements in D24, Carbon Black</td>
</tr>
<tr>
<td>2000</td>
<td>Ricky McGee</td>
<td>For his contributions in D24, Carbon Black</td>
</tr>
<tr>
<td>2001</td>
<td>Ivan Erwin</td>
<td>For his accomplishments in D11, Rubber, including his chairmanship of D11.15, Rubber Degradation Testing</td>
</tr>
<tr>
<td>2001</td>
<td>Denise Kotz</td>
<td>For her contributions to D11, Rubber, including physical testing</td>
</tr>
<tr>
<td>2001</td>
<td>Frank Lussier</td>
<td>For his contributions to D11, Rubber, and especially toward Chemical Analysis (D11.11)</td>
</tr>
<tr>
<td>2001</td>
<td>Jeff Melsom</td>
<td>For his leadership and contributions to D24, Carbon Black, and his chairmanship of D24</td>
</tr>
<tr>
<td>2001</td>
<td>Lee Coates</td>
<td>For his contributions in D24, Carbon Black</td>
</tr>
<tr>
<td>2002</td>
<td>Alec Vare</td>
<td>For his accomplishments in D11—Rubber, and especially his chairmanship of D11 and D11.22 on Natural Rubber</td>
</tr>
<tr>
<td>2002</td>
<td>Charles Rader</td>
<td>For his activities in D11, Rubber, and especially for his chairmanship of D11.08 (Nomenclature and Terminology)</td>
</tr>
<tr>
<td>2002</td>
<td>Tom Powell</td>
<td>For his contributions in D24, Carbon Black and his activities in the Executive Subcommittee</td>
</tr>
</tbody>
</table>
Acknowledgment

Acknowledgment of Contributors to ASTM Rubber Standards

The many ASTM standards discussed in this book were created through the excellent technical knowledge, strong commitments, and hard work of hundreds of rubber technologists who volunteered their time and effort in various task groups and subcommittees of ASTM D11 (on Rubber) and D24 (on Carbon Black). These standards truly represent a consensus of the rubber industry.

Thousands of ASTM members have contributed over the last 90 years to the development of these rubber standards and their efforts should be recognized. Therefore, it is appropriate to recognize directly those ASTM members who received the ASTM “Award of Merit” or the “Distinguished Service Award” in the last 50 years. However, it should be noted that many other ASTM members, who are not listed below, have also given countless hours of excellent work to develop ASTM standards and should be recognized as well. If it were not for all these contributors, these ASTM standards would not be at the high quality level they are today.
<table>
<thead>
<tr>
<th>YEAR RECEIVED</th>
<th>AWARD RECIPIENTS</th>
<th>ACHIEVEMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1956</td>
<td>Simon Collier</td>
<td>Chairman of D11 for 14 years (from 1944 to 1962)</td>
</tr>
<tr>
<td>1959</td>
<td>Elmer G. Kimmich</td>
<td>Very active in D11, Rubber</td>
</tr>
<tr>
<td>1961</td>
<td>John J. Allen</td>
<td>For work in D11, Rubber. Also an honorary member of D11</td>
</tr>
<tr>
<td>1962</td>
<td>Harry G. Bimmerman</td>
<td>For work in D11, Rubber. Also an honorary member of D11</td>
</tr>
<tr>
<td>1964</td>
<td>Arthur Juve</td>
<td>Very active in Rubber Compounding Materials (now D11.20), Recipient of the Goodyear Medal from the ACS</td>
</tr>
<tr>
<td>1965</td>
<td>Issac Drogan</td>
<td>Very active in D11, Rubber</td>
</tr>
<tr>
<td>1966</td>
<td>Benjamin S. Garvey, Jr.</td>
<td>Known for his contributions in rubber process-ability testing as well as rubber testing in general. Known for the “Garvey Die” design</td>
</tr>
<tr>
<td>1968</td>
<td>Robert Stichler</td>
<td>Longest continuous participation in D11 activities. Major contributions to D11. Established the Technical Advisory Group to ISO TC 45 on Rubber. Held position as Leader of USA Delegation to ISO TC 45 from the formation date of the TAG until he retired in 1980.</td>
</tr>
<tr>
<td>1969</td>
<td>Joseph F. Kerscher</td>
<td>Chairman of D11 from 1972 to 1978. Also made honorary member. Very active in the ISO TC45 TAG</td>
</tr>
<tr>
<td>1970</td>
<td>Gustav Maassen</td>
<td>Contributions include Rubber Aging and Degradation Testing</td>
</tr>
<tr>
<td>1972</td>
<td>Maynard Torrence</td>
<td>Very active in Rubber Terminology (D11.08). Also active in ISO TC45</td>
</tr>
<tr>
<td>1974</td>
<td>William H. King</td>
<td>Very active in developing Rubber Physical Testing Standards (D11.10). Also active in ISO TC45</td>
</tr>
<tr>
<td>1974</td>
<td>Thomas D. Bolt</td>
<td>Significant contributions to development of Carbon Black Standards</td>
</tr>
<tr>
<td>1975</td>
<td>W. Howard Bryan</td>
<td>Contributions include Coated Fabrics (D11.37) and Rubber Thread. Also active in ISO TC45</td>
</tr>
<tr>
<td>1976</td>
<td>Francis G. Mees</td>
<td>Chair of D24 on Carbon Black for six years. Major contributions in development of carbon black standards as well as Chemical Analysis (D11.11) and Rubber Nomenclature (D11.08). Very active in ISO TC45 activities</td>
</tr>
<tr>
<td>1977</td>
<td>Floyd S. Conant</td>
<td>Chairman of D11.14, Rubber Time and Temperature Dependent Properties. Also contributed to F9—Tires. Involved in ISO TC45 activities as well</td>
</tr>
<tr>
<td>1977</td>
<td>J. Frank Svetlik</td>
<td>Major contributions in the development of Carbon Black Test Methods. Also active in ISO TC45</td>
</tr>
<tr>
<td>1978</td>
<td>Alan Veith</td>
<td>Next to R. D. Stiehler, probably has the record for longest continuous participation in D11 activities (beginning in 1952). Major contributions to D11 on Rubber as well as F9 on Tires. Also very active in statistical standards and participates in E11 and D17. Very active in ISO TC45</td>
</tr>
<tr>
<td>1978</td>
<td>Francis Lyon</td>
<td>Major contributions in the development of Carbon Black Test Methods</td>
</tr>
<tr>
<td>1981</td>
<td>Peter Larsen</td>
<td>Chaired Subcommittee on Time and Temperature Dependent Properties (D11.14) and Rubber Terminology. Very active in ISO TC45 on Rubber</td>
</tr>
</tbody>
</table>
ABOUT THE EDITOR

John Dick has over 30 years of experience in the rubber industry. He was with BF Goodrich and later Uniroyal Goodrich Tire Co. as a Section Manager and Development Scientist in R&D until 1991 when he joined Alpha Technologies (formerly Monsanto's Rubber Instruments Group) as a Senior Marketing Technical Service Specialist. Mr. Dick has authored over 45 journal and magazine publications and three books on polymer technology. He received the Monsanto Master Technical Service Award in 1994, the American Chemical Society Rubber Division "Best Paper Award" in 1995, and a University of Akron Appreciation Award in 1998 for Teaching Polymer Compounding Courses in their Continuing Education Program. He is a Fellow in ASTM International, receiving the Award of Merit in 1990. Also he has represented the United States as a delegate to the International Standards Organization (ISO) for the last 20 years. He was appointed in 1992 to be the leader of the U.S.A. Delegation to ISO TC-45 on Rubber. He teaches rubber technology courses at both University of Akron and University of Wisconsin Continuing Education Departments. He is a member of American Chemical Society, Society of Rheology, and the American Society for Quality with a CQE. He is also a representative to the RMA. Mr. Dick received his B.S. degree from Virginia Polytechnic Institute in 1970 and an M.A. from the University of Akron in 1979. His hobbies include photography and amateur radio.