Subject Index

A

AASHTO Charpy V-notch requirements, 356–357
AASHTO fatigue-design curve welded beams, 260–270 welded bridge components, 265–267

AASHTO Standard Specifications for Highway Bridges, 419

AASHTO Standard Specifications for Welding Structural Highway Bridges, 355

Aircraft, failures, 5–6

Aluminum, fatigue-crack propagation, constant amplitude load fluctuation, 202–203

ANSI/AASHTO/AWS D1.5–96 Welding Code, Section 12, 355

API 579, 402

Arc welding, 273–274
maximum temperature of weld metal, 274

ASME Code Section III, 265, 354

ASME Section XI Rules, 338, 396, 401–402

A508 steel, Kc-CVN-CTOD-J correlations, 129

A516 steel, Kc-CVN-CTOD-J correlations, 128

A517 steel, Kc-CVN-CTOD-J correlations, 130

A533 steel, Kc-CVN-CTOD-J correlations, 129

ASTM A–328, 457

ASTM E–23, 119

ASTM E–399, 77, 95, 98, 102, 106, 405, 416

ASTM E–561, 78

ASTM E–813, 78

ASTM E–1152, 78

ASTM E–1221, 78

ASTM E–1290, 78

ASTM E–1737, 78

ASTM E–1820–96, 78–79, 91

ASTM E–1921, 79, 81, 93–94

As-welded components, fatigue behavior, 253–264

Austenitic stainless steels, fatigue-crack propagation, constant amplitude load fluctuation, 201–202

B

Barge, see Ingram Barge Beam in bending, stress-intensity factors equation, 41–42

Bridge components, welded, AASHTO fatigue design curves, 265–269

Bridges, see Steel bridges

Brittle failure aircraft, 5 bridges, 5–8 characteristics, 9, 11 vs. ductile, 9–11 minor, 16–17 history, 3–9 ships, 4–8

Brittle fracture, 3

Bryte Bend Bridge, 414–418 failure by, analyzing structure, 136–137 possibility, factors to be controlled, 139–140 prevention, 338

Bryte Bend Bridge, 413–427

AASHTO Fracture Control Plan for Steel Bridges, 414 adequacy of AASHTO Fracture Control Plan, 423–427
effect of details on fatigue life, 424–426
implied versus guaranteed notch toughness, 423–424
brittle fracture, 414–418
critical detail at, 421
design aspects related to AASHTO Fracture Control Plan, 418–423
layout, 417
superstructure, 414–415
BS5500, 265
BS7608, 265
Burst tests, steel casings, 468–487
failure analysis, 472–480
flaw geometry, 469, 471
fracture mechanics equation, 474
material and experimental procedures, 468–469
metallographic analysis, 476, 478, 481–483
Charpy V-notch impact energy, versus temperature behavior, 11–12
Charpy V-notch impact energy absorption curve, steels, 472–473
Charpy V-notch impact test predicted dynamic fracture toughness, 477–478
steel casings, 468–470
temperature shift, 114–116
Charpy V-notch–Klc–Kc correlation, two-stage, 119–122
Charpy V-notch specimens, fracture toughness, weldments, 277–279
Circular crack, embedded in infinite plate, stress-intensity factors equation, 37–39
Cofferdam, 455
critical fracture toughness, 462–463
nonpropagating crack, 462–465
Column instability, 19–20, 142–143
Compact-specimen test, setup, 83
Constant-amplitude loading, 165–166
Constraint affecting fracture toughness, 71–76
effect fitness for service analysis, 389–394
fracture toughness, 101–109
structural behavior, Ingram Barge, 428–431
Corrosion-fatigue-crack growth, rate as function of RMS stress-intensity factor, 311–312, 316–319
Corrosion-fatigue-crack initiation, 296–305
behavior, steels, 298–305
cyclic-load frequency effect, 301–302
equation for predicting, 303–305
long-life behavior, 303
stress ratio of effects, 302
test specimens and experimental procedures, 296–298
Corrosion-fatigue-crack propagation, 305–307, 309–324
behavior below Klc, 313–320
cyclic frequency effect, 311
cyclic-stress waveform effect, 319–321
environmental effects during transient loading, 320–323
generalized behavior, 323–324
near-threshold rate, 309–310
reduced cyclic crack-opening displacement, 310
threshold, 306–307, 309–313
Corrosion-fatigue failures, prevention, 324–326
Crack growing from round holes, stress-intensity factors equation, 40–41
inclined, stress-intensity factors, 44–45
instability, 19–20, 142–143
irregularly shaped, estimating stress-intensity factors, 45–47
probability of detection, 444–445
sharp, constraint ahead of, 105–107
subjected to point or pressure loading, stress-intensity factors equation, 42–43
see also Fatigue cracks
Crack arrest designing for, 388
fitness for service analysis, 404–408
Crack arresters, 352
Crack blunting, 107–109
Crack closure, mechanisms, 196–197
Crack-closure model, 221
Crack extension energy-balance approach, 60
under loading conditions, 222
Crack front, constant K, 177
Crack growth, 22
effect of cyclic-stress range, 172–173
initial crack length, 174
Subject Index 509

local residual stresses
 effect, 343
phases, 255
ship steel behavior, 449
stress-corrosion, fatigue
 and, 19–23
Crack-growth rate
 as function of RMS stress-intensity-factor range, 223–225
subcritical, relation to
 stress-intensity factor, 295
Crack-growth-rate tests, stress-corrosion
 cracking, 284, 294–296
Crack initiation, 21–22
 fitness for service analysis, 404–408
Crack length, critical, 463
Crack propagation, 21–22
 fitness for service analysis, 404–408
 stages, weldments, 248–249
 unstable, 334
Crack-shape parameter, 152–153
Crack size
 critical, 138
 for critical details, Trans Alaska Pipeline Service oil tankers, 443–444
 as function of yield strength and fracture toughness, 144–145
 initial, inspection
 capability, Trans Alaska Pipeline Service oil tankers, 444–445
Crack surface displacements, modes, 31–32
Crack tip
 coordinate system and
 stress components, 34
 deformation modes, stress and displacement
 fields, 32–33
 of “infinite” sharpness, limiting constraint, 107
 opening mode stresses
 near, short- vs. deep-crack specimens, 391
Crack-tip-blunting model, 220
Crack-tip deformation, 50–52
Crack-tip opening
 displacement, 55–56, 88–89
 calculation, 93
 critical value, 62
 Dugdale Model, 60–63
fracture toughness tests, 461
 stress-intensity factors relationship, 126–127
 temperature-transition curve, 128, 130–131
Crack-tip opening
 displacement parameter, relation to
 J-integral, 63
Crack-tip plasticity model, 61
Critical member, nonfracture
 impact test requirements, 359
Cyclic-load frequency, effect on
 corrosion-fatigue-crack initiation, 301–302
 fatigue-crack propagation, 206–209
Cyclic-stress waveform, effect on
 corrosion-fatigue-crack propagation, 318–321

D
 Delayed retardation, 220
 Design
 definitions, 133–134
 effect of lowering stress, fracture-control plan, 347
 fatigue-crack propagation example, 212–216
 fatigue curves, 182
 high-strength steel selection for pressure vessel, 150–158
 fracture-mechanics design, 151–157
 general analysis, 157–158
 tradition approach, 150–151
 see also Fracture-mechanics design
 Direct current electric potential probes, 469, 471
 Discontinuities, weld, their effects, 243, 245–250
 Distortion, weldments, 240–241
 Distribution curves, unimodal, fatigue-crack growth, 227–228, 230–232
 Distribution functions, 218
Double cantilever clip-in displacement gage, 84–85
Driving force, 14–15
 definition, xv
Drop weight NDT test, 123
Ductile failure
 vs. brittle behavior, 9–10
 characteristics, 9, 11
Ductile plastic fracture, 368
Dugdale Model, CTOD, 60–63
Dynamic loading
 fracture-toughness transition behavior, steels, 476, 481
 impact transition curve, 368, 373

E
 Edge crack, stress-flaw-size relation, 418, 420, 422
 Elastic-plastic behavior, as fracture criterion, 364
 Elastic-plastic conditions, 405–406
 Elastic-stress-field distribution, ahead of crack, 73–74
 Elliptical crack, embedded in infinite plate, stress-intensity factors equation, 37–39
 Environment–material system, corrosion-fatigue-crack growth rate dependence on, 313, 315–316
 Euler column instability, 142–143

F
 Fail-safe design, 135
 Failure
 assessment diagram, 397–399
 at component connections, 237–238
 consequences, 368–370
 elapsed cycles to, 20–21
 modes, 333
 Fatigue, 163–181
 definition, 163
 effect of stress concentration, 184–187
 history, 3–9
 loading, 164–167
constant-amplitude, 165–166
variable-amplitude, 166–167
performance, factors affecting, 164
stress-corrosion crack growth and, 19–23
testing, 167–168
fatigue-crack-initiation tests, 168–172
fatigue-crack-propagation tests, 172–174
strain-life tests, 170, 172
stress-life test, 166–171
tests of actual or simulated structural components, 174–176
Fatigue control, 23–24
Fatigue crack characteristics, 175–181
marks, schematic representation, 176–177
multiple, initiation, 176–177
originating from internal discontinuities, 247–248
propagation, 177
striations, 177, 180
Fatigue crack behavior, weldments
smooth welded components, 250–253
as welded components, 253–264
Fatigue-crack growth
calculations, 215
controlling, 352–353
effects of stress concentration, 207, 209–210
retardation, 220
steels, 225–229
under unimodal distribution curves, 227–228, 230–232
under variable-amplitude loading, 218
Fatigue-crack initiation, 182–192
behavior of steels, 187, 299
dependence on nominal-stress fluctuations, 185–186
life, 163
predicting from notches, 189–192
sites, weldments, 246–250
tests, 168–172
threshold dependence on yield strength, 189, 260–262
independence from stress ratio, 188
predicting, 187–189
Fatigue-crack propagation, 194–232
analysis, 254–255
background, 194–196
bottom shell plates, Trans Alaska Pipeline Service oil tankers, 447–450
constant amplitude load fluctuation, 199–203
aluminum and titanium alloys, 202–203
austenitic stainless steels, 201–202
ferrite-pearlite steels, 200–201
martensitic steels, 199–200
design example, 212–216
effect of cyclic frequency and waveform, 206–209
mean stress, 203–206
stress ratio, 205
life, 163
dependence, 254
regions, 194–195
in shadow of notch, 207
steel weldments, 210–212
tests, 172–174
threshold, 196–199
effect of factors, 197
variable-amplitude load fluctuation, 216–221
fatigue-crack growth, 218
ordered-sequence cyclic load, 225
probability-density distribution, 216–219
root-mean-square model, 221–225
single and multiple high-load fluctuations, 218, 220–221
Fatigue life
determination, calculations, 271–272
effect of details, Bryte Bend Bridge, 424–426
stages, 182
storm avoidance and, 438
Fatigue loading
histogram, Trans Alaska Pipeline Service oil tankers, 445–447
reduced, effect, Trans Alaska Pipeline Service oil tankers, 450–453
Fatigue-strength-reduction factor, 182
Ferrite-pearlite steels, 177, 179
fatigue-crack propagation, constant amplitude load fluctuation, 200–201
Fitness for service, 25–26, 384–408
definition, 25, 384–385
evaluations, 388
existing procedures, 396–402
API 579, 402
ASME Section XI, 396, 401–402
PD 6493, 396–400
proof or hydro-test to establish continued service fitness, 402–404
Fitness-for-service analysis
difference between initiation and arrest
fracture toughness behavior, 404–408
fracture mechanics use, 385–396
constraint effect, 389–394
effect of many factors, 394–396
loading rate effect, 386–389
Fixtures, test, 82–85
Flaw size
critical relation with stress and material fracture toughness, 336
service temperature effect, 343–344
effect on life under fatigue loading, 349–350
initial, effect of reducing, 347–348
maximum, 136
relationship with critical stress-intensity factor, 136, 141
stress and material toughness, 18
Fracture
behavior, regions, 79–80
factors controlling
susceptibility to, 346–347
history, 3–9
identification, fracture-
control plan, 340–342
weldments, primary cause, 335
Fracture control, 23–24
guidelines, historical, 337–339
Fracture-control plan, 23–24,
348–350
comprehensive, 360–363
design consideration
recommendations, 353–354
design methods, 351–353
developing, 336–337
effect of
lowering design stress, 347
reducing the initial flaw
size, 347–348
using material with
better fracture
toughness, 348–349
elements, 339–340
fracture identification, 340–342
historical background, 337–339
K_{IC}, design use, 343, 345
relative contribution
establishment, 342–346
relative efficiency
determination, 346–353
steel bridges, 354–360
AASHTO Charpy
V-notch requirements, 356–359
design, 354–355
fabrication, 355
high-performance steels, 357
material, 355–356
verification of AASHTO
fracture toughness
requirement, 357
Fracture criteria, 24–25, 364–382
consequences of failure, 368–370
elastic-plastic behavior, 364
general levels of
performance, 366–368
leak-before-break criterion, 378–381
original 15-ft-lb CVN
impact criterion, ship
steels, 370–373
parts, 366
selection, 364–365
steel bridges, 381–382
through-thickness yielding
criterion, 374–378
transition-temperature
criterion, 373–374
varying for different
structure types, 369
Fracture instability, prediction
with critical plane-
strain stress-intensity
factors, 60
Fracture mechanics, 14–16
driving force, 14–15
fatigue crack propagation
analysis, 254–255
fundamental principle, 31
resistance force, 15–16
Fracture-mechanics approach, stress-corrosion
cracking, 283
Fracture-mechanics design, 16–19, 133–158
analysis of failure of 260-in.-diameter motor
case, 146–150
basic information, 135
discontinuities in, 135
factors controlling
susceptibility to
fracture, 335
fail-safe, 135
high-strength steel selection
for pressure vessel
151–157
assumption that a flaw is
present, 151–152
crack-shape parameter,
152–153
design stress, 153
magnification factor,
154–155
materials selection, 142,
144–146
K_{IC}/σ_y ratio, 144
procedure, 17–18
for terminal failure, 136–142
safe-life, 135
specifying more fracture
toughness than
required, 367
Fracture mechanics equation, 474
Fracture mechanics
methodology, see Trans
Alaska Pipeline Service
oil tankers
Fracture paths, multiple-load,
351–352
Fracture toughness
behavior, weldments, 272–279
bridge steel requirements,
355–356
crack blunting, 107–109
crack depth effect, 390–393
crack size effect, 480
criterion
critical stress intensity
factor, 381
through-thicknessyielding before
fracture, 377–378
definition, 68
difference between
initiation and arrest
behavior, 404–408
effect of
constraint, 101–109
loading rate, 98–101
temperature and loading
rate, 114
temperature and strain
rate, 16, 71, 73
effect on life under fatigue
loading, 349–350
elastic-plastic behavior, 69–70, 72
fracture criterion, 366–367
fully plastic behavior, 69,
71–72
as function of a/W ratio,
391–395
loading rate
effect on behavior of
structures, 387–388
slow, initiation at, 408
lowest value, 68–69, 72
materials with low values,
use, 346
microstructure effect, 273
plane-strain impact,
correlation with CVN
energy absorption, 119–120
relation with
static and dynamic, 405
stress and critical flaw
sizes, 336
requirements, specifying, 367
service conditions affecting, 69–76
shear lip size and, 102–103
temperature and strain rate
test, weldments, 277–279
Trans Alaska Pipeline
Service oil tankers, 441–443
transition behavior, steels,
static and impact
loading, 476, 481
under linear-elastic
condition, 68–69, 72
values of steels, 150
see also Stress-intensity
factors
Free surface correction factor, 35
stress-intensity factors, 44
Frequency-of-occurrence data, 217–218

G

Good design practice, 140
Griffith analysis, 35
Griffith fracture criterion, 59–60
Griffith Theory, 58–60

H

Heat treatment
effect on K_{scc}, 287, 290
postweld, effects on as-
welded components,
fatigue behavior, 253–264
Histogram, fatigue loading,
Trans Alaska Pipeline
Service oil tankers, 445–447
Holes, subjected to point or
pressure loading,
stress-intensity factors
equation, 42–43
Hydro-test, to establish
fitness for continued
service, 402–404

I

Ingram Barge, 428–437
constraint effect on
structural behavior,
428–431
failure, 431–436
triaxial stress loading, 429–430
Initiation life, relation to
propagation life, 212–213
Instrumentation, test, 82–85
Interim Guidelines for
Welded Steel Moment
Frame Structures, 338
Irwin, George R.,
comprehensive
fracture-control plan,
360–363

J

J integral, 54–55, 63–64
calculation, 91–93
stress-intensity factors
relationship, 126–127

K

K_{scc} 286–290
corrosion-fatigue-crack-
propagation behavior
below, 313–320
cutoff time effect, 290
date for material-
environment systems,
291–294
design use, 343, 345
tests using cantilever-beam
specimen and bolt-
loaded WOL
specimens, 287, 289

L

Leak-before-break criterion,
378–381
Load-crack-mouth-opening
displacement, 85–87
Loading rate
affecting fracture
toughness, 70–72
effect on
fitness for service
analysis, 386–389
fracture toughness, 98–101
stress-intensity factors,
96–100
evaluating remaining life,
388
fracture toughness, effect
on behavior of
structures, 387–388
reduction, fracture-control
plan, 353
Loading-rate shift, see also
Structural steels
Load-line displacement, 84,
86
Load-load-line displacement,
85–87
Lock-and-dam sheet piling,
455–467
failure analysis of sheet 55,
462–466
failure description, 457,
459–461
steel properties, 457, 461–462
Long-life behavior, corrosion-
fatigue-crack initiation,
303
Low-cycle fatigue, tapered
welded specimen, 251–253
Lower-transition region,
short- vs. deep-crack
specimens, 391–393

M

Magnification factor, 154–155
Martensitic steels, fatigue-
crack propagation,
constant amplitude
load fluctuation, 199–200
Materials selection, 142, 144–146
economics, 145
K_{ef}/σ_{ys} ratio, 144
Material toughness
k_{scc}, 22
relationship with stress and
flaw size, 18
Metallographic analysis, steel
casings, 476, 478, 481–483
Microstructure
effect on fracture-toughness
behavior, 273
weld metal and heat-
effected base metal,
274–279
Mohr's circle of stress, 105, 429–430
Motor case, 260-in.-diameter, failure analysis, 146–150
Multiple-load fracture paths, 351–352

N
Nil-ductility temperature test, 13
Nil-ductility transition temperature, K_{Id} value, 123–126
Northridge earthquake, 394–395
Notched geometries, constraint to plastic flow cause by, 429–430
Notches
cause stress intensification, 183
predicting fatigue-crack initiation, 189–192
single-edge, stress-intensity factor equation, 35–37
Notch toughness, 10–14
brittle fractures and, 9
criterion specification, 366–367
fracture-control plan, 351
implied vs. guaranteed, 423–424
measurement, 11
relation to structural performance, 364–365
transition temperatures, 12–13

O
Oil tankers, see Trans Alaska Pipeline Service oil tankers
Out-of-plane constraint, 389–390

P
PD 6493, 338, 396–400
failure assessment diagram, 397–399
Plane strain, 32–33
limiting conditions, 374–376
macroscopic, 109
Plane-stress, limiting conditions, 374–376
Plastic flow, constraint effects on fracture toughness, 102–104
Plasticity, microscopic, 109
Plastic zone size, 50–52
large, effective stress-intensity factors, 51–54
Point Pleasant Bridge fracture, 6–8
Pop-in, 388
Probability-density distribution, 216–219
Proof test, to establish fitness for continued service, 402–404
Propagation life, relation to initiation life, 212–213

R
Random-stress loading, 165
Rayleigh curves, 218
Reaction stresses, 239
Reduction factor, 443–444
Residual stress
beneficial and detrimental, 239
development in weldments, 240–241
effect on crack growth, 343
fatigue crack behavior, as-welded components, fatigue behavior, 260–263
elimination, 263–264
induction, 239
measuring, 240
redistributed under cyclic loading, weldments, 248
superposition of applied compressive stress, 262–263
applied tensile stress, 262
weldments, 238–241
Residual-stress model, 220
Resistance force, 15–16
definition, xv
analysis of results, 85–87
ASTM Standard Fracture Tests, 76–79
critical, in terms of stress-intensity factors, 90
overview, 67–69
test fixtures and instrumentation, 82–85
test specimen notch, 82
size, 80–82
Retardation, fatigue-crack-growth, 220
Roberts-Newton lower-bound CVN-K_i relation, 126–127
Root-mean-square model, 221–225
Rotating-beam fatigue tests, 169
Rough machining, 252

S
SAC Report 95-09, 395
Safe-life design, 135
Service conditions, affecting fracture toughness, 69–76
constraint, 71–76
loading rate, 70–72
temperature, 70
Shear stress
planes, 104
relationship with normal stress, 104–105
Ship failures, 4–6, 338
constraint experiences, 431
see also Ingram Barge; Trans Alaska Pipeline Service oil tankers
Ship steels, CVN impact criterion, 370–373
Single-edge notch, stress-intensity factors equation, 35–37
Smooth welded components, fatigue crack behavior, 250–253
specimen geometries and test methods, 250–251
surface roughness effects, 251–253
$S-N$ curve, 168–171, 212
initiation and propagation components, 21, 183
Specimen notch, 82
Specimen size, 80–82
SR16 Impact Testing, 473
Static loading
fracture-toughness transition behavior, steels, 476, 481
transition region, 368, 373
Steel bridges
failures, 5-6
fracture-control plan, 354–360
AASHTO Charpy V-notch requirements, 356–359
design, 354–355
fabrication, 355
high-performance steels, 357
material, 355–356
verification of AASHTO fracture toughness requirement, 357
See also Bryte Bend Bridge
Steel casings
API specifications, 482–483, 487
chemical composition, 468–469
Steels
chemical composition, restrictions, 5
fatigue-crack growth, 225–229
fracture-toughness transition behavior, static and impact loading, 476, 481
high-performance, fracture-control plan in bridges, 357
properties, 457, 461–462
Steel weldments, fatigue-crack propagation, 210–212
Storm avoidance, fatigue life and, 438
Strain-controlled test specimen, 172
Strain-life tests, 170, 172
Stress
allowable, 133–134
design, 153
effect on life under fatigue loading, 349–350
flow lines, 242
history, 216–217
limiting values, 67
mean, effect on fatigue-crack propagation, 203–206
nominal, relation to critical stress-intensity factor, 136, 141
normal, relationship with shear stress, 429
principal, 104
relation with critical flaw sizes and material fracture toughness, 336
flaw size and material toughness, 18
Stress amplitude, 165–166
Stress analysis, cracks in elastic solids, 31–32
Stress concentration caused by grooves, scratches, and cracklike surface irregularities, 252
effect on fatigue, 184–187
fatigue-crack growth, 207, 209–210
magnitude, 242–243
effects of dimensions, 258
regions, 244
weldments, 241–245, 246
Stress-concentration factor, 29–30
Stress-corrosion cracking, 281–296
cantilever-beam specimen, 284–286
crack-growth-rate tests, 294–296
experimental procedures, 283–288
fracture-mechanics approach, 283
K_t0c, 286–290
date for material-environment systems, 291–294
test duration, 290–291
test geometries, 282
Stress intensification, 183
planar discontinuities, 243
surface discontinuity, 243
Stress intensity factor analysis
lock-and-dam sheet piling, 463–465
Stress-intensity factors, 15, 28–64
applied, 135
calculation, 28, 67, 91
vs. crack length, lock-and-dam sheet piling, 464–465
critical, 67–68
intermediate load, rate shift, 111
intermediate-loading rate, 100
limiting thickness for plane-strain behavior, 106–107
predicting using CVN impact tests, 119–121
relationship with upper-shelf CVN test results, 120–124
slow-loading, effect of loading rate, 98, 100
thickness effect, 101–103
under plane strain, 74–76
critical crack size as function of, 144–145
for critical details, Trans Alaska Pipeline Service oil tankers, 443–444
critical resistance force in terms of, 90
critical value, 15–16
CTOD relationship, 126–127
effective, large plastic zone size, 51–54
effect on incubation time, 290–291
general form, 34
impact, 457
value at NDT temperature, 123–126
increased by fatigue to critical stress intensity factor, 141
J-integral relationship, 126–127
Kc-Kid impact-loading-rate shift, 110–111
limiting values, 67
materials selection, economics, 145
nearly related to stress, 33
for place strain, 88
prediction using CVN-Kc
K_c-J and S relations, 126–131
relation to nominal stress and flaw size, 136, 141
subcritical-crack-growth rate, 295
root-mean-square corrosion-fatigue-crack-growth rate as
<table>
<thead>
<tr>
<th>Subject Index</th>
<th>Page Dimensions: 432.0x648.0</th>
</tr>
</thead>
</table>

- **function of**, 311–312, 316–319
- **crack-growth rate as function of**, 223–225
- **studying stress-corrosion cracking**, 283
- **surface flaw**, 403
- **temperature and loading rate effects**, 96–99
- **temperature shift**, 109–110
- **value of crack geometrics**, 137
- **Stress-intensity factor equations**
 - **cracks growing from round holes**, 40–41
 - **embedded elliptical or circular crack in infinite plate**, 37–39
 - **estimation of other factors**, 42, 44–47
 - **holes or cracks subjected to point or pressure loading**, 42–43
 - **single crack in beam in bending**, 41–42
 - **single-edge notch**, 35–37
 - **superposition**, 47–50
 - **surface crack**, 39–40
 - **through-thickness crack**, 35
- **Stress-life test**, 168–171
- **Stress raisers**, 177
- **Stress range**, 165
 - **effective**, 272
 - **vs. fatigue life**, 255–256
 - **maximum**, 184
- **Stress ratio**, 166
 - **dependence of fatigue-thresholds stress-intensity-factor range on**, 198–199
 - **effect on corrosion-fatigue-crack initiation**, 302
 - **fatigue-crack propagation**, 205
- **Stress-strain curve**, ductile and brittle materials, 9–10
- **Structural failures, brittle**, 3–9
- **Structural steels**
 - **inherent fracture toughness**, 105–106
 - **loading-rate shift**, 109–116
 - **CVN temperature shift**, 109–110
- **K_I and K_{II} impact-loading-shift**, 110–111
- **K_{III} intermediate-loading-shift**, 111
- **predictive relationship for temperature shift**, 112
- **regions of fracture behavior**, 77
- **significance of temperature shift**, 112–116
- **Surface crack, stress-intensity factors equation**, 39–40
- **Surface crack model**, 447
- **Surface finish, effect on the fatigue limit of steels**, 254
- **Surface flaw, stress intensity factor**, 403
- **Surface roughness, fatigue crack initiation effects, smooth welded components**, 251–253
- **Temperature affecting fracture toughness**, 70
- **effect on stress-intensity factors**, 96–100
- **reference, establishing master curve**, 93–94
- **Temperature shift**, 119
 - **between K_{Id} and K_{cr}**, 126
 - **Thermal stress relief**, 263
 - **Three-point bend test, setup**, 83
- **Threshold stress-intensity-factor range**, 196–199
 - **dependence on stress ratio**, 198–199
- **Through-thickness crack constraint conditions**, 105–106
 - **stress-flaw-size relation**, 138–140
 - **stress-intensity factors equation**, 35
- **Through-thickness crack growth model**, 448
- **Through-thickness stresses**, 101
- **Through-thickness yielding criterion**, 374–378
 - **plane stress condition**, 376–377
 - **Time to failure influence of specimen geometry**, 286, 288
- **tests, stress-corrosion cracking**, 284
- **Titanium alloys, fatigue-crack propagation, constant amplitude load fluctuation**, 202–203
- **Total fatigue life**, 163
- **Trans Alaska Pipeline Service oil tankers**, 438–454
- **application of methodology to a detail**, 441–450
 - **critical details, identification**, 441
 - **fatigue crack propagation in bottom shell plates**, 447–450
 - **fracture toughness**, 441–443
 - **histogram of fatigue loading**, 445, 447
 - **inspection capability for initial crack size**, 444–445
 - **stress intensity factors and critical crack size**, 443–444
 - **background**, 439
 - **fracture mechanics methodology**, 439–441
 - **reduced fatigue loading effect**, 450–453
 - **storm avoidance**, 438
- **Transient loading, environmental effects during, corrosion-fatigue-crack propagation**, 320–323
- **Transition temperature, notch toughness**, 12–13
- **Transition-temperature criterion**, 373–374
- **Transition temperature shift loading rate and**, 113
 - **predictive relationship**, 112
 - **significance**, 112–116
- **Triaxial tensile state of stress**, 101
- **Two-stage CVN-K_{Id}-K_{cr} correlation**, 126–127

- **U**
 - **Uniaxial tension test**, 429
 - **Useful life, structural component**, 334
Variable amplitude cyclic loads, 166–167
weldments, 269–272
example problem, 270–272

Waveform, effect on fatigue-crack propagation, 206–209
Welded bridge components, AASHTO fatigue design curves, 265–267
Weldments, 237–279
arc-welding, 273–274
crack extension, 369
discontinuities, 243, 245
categories, 245–246
effect on fatigue behavior, 247
fatigue crack initiation sites, 246–250
geometric, 257–258
their effects, 243, 245–250
distortion, 240–241
fatigue crack behavior, 250–264
smooth welded components, 250–253
as welded components, 253–264
weld termination, 248–249
fracture-toughness behavior, 272–279
fracture-toughness test, 277–279
gouges and weld-imperfection stress raisers, 267
methodologies of codes and standards, 264–269
AASHTO fatigue design curves for welded bridge components, 265–269
primary cause of fractures, 335
reducing magnitude of stress concentration, 258
residual stresses, 238–241
steel, fatigue-crack propagation, 210–212
stress concentration, 241–245
variable amplitude cyclic loads, 269–272
example problem, 270–272
Welds, defective, 4–5
Williams stress function, 394
WOL specimens, bolt-loaded, KIscc tests, 287, 289

Yielding, 104
Yield strength
critical crack size as function of, 144–145
fatigue-crack initiation threshold dependence on, 189, 260–262
values of steels, 150