Standard Practice for Collection of Coal Samples from Core

This standard is issued under the fixed designation D 5192; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (ε) indicates an editorial change since the last revision or reapproval.

1. Scope
1.1 This practice describes procedures for collecting and handling a coal sample from a core recovered from a borehole.

1.2 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only.

1.3 This standard does not purport to address all of the safety problems, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

2. Referenced Documents

2.1 ASTM Standards:
D 121 Terminology of Coal and Coke
D 388 Classification of Coals by Rank
D 1412 Test Method for Equilibrium Moisture of Coal at 96 to 97 Percent Relative Humidity and 30°C
D 2013 Method of Preparing Coal Samples for Analysis
D 2796 Definitions of Terms Relating to Megascopic Description of Coal and Coal Seams and Microscopical Description and Analysis of Coal
D 4371 Test Method for Determining the Washability Characteristics of Coal
D 4596 Practice for Collection of Channel Samples of Coal in the Mine

3. Terminology

3.1 Definitions—For additional definitions of terms, refer to Terminology D 121.

3.1.1 borehole, n—the circular hole through soil and rock strata made by boring.

3.1.2 caves or washouts, n—zones of increased hole diameter caused by rock fragments that fall from the walls of a borehole and can block the hole or contaminate the cuttings and which erode or abrade the sidewall of the borehole by the action of the drilling. These zones can affect the accuracy of certain geophysical logs (especially density). Corrections to other geophysical logs can be made if a caliper log is available. The most common causes of caves or washouts include soft or fractured lithologies, the presence of water-producing zones, and the downhole pressure of the drilling medium (fluid or air) that often causes differential erosion of various strata within the borehole.

3.1.3 concretion, n—in a geological sense, a mass of mineral matter found in rock of a composition different from its own and produced by deposition from aqueous solution in the rock.

3.1.4 core, n—in drilling, a cylindrical section of rock (coal) that is usually 5 to 10 cm in diameter, taken as part of the interval penetrated by a core bit and brought to the surface for geologic examination, representative sampling, and laboratory analyses.

3.1.5 core barrels, n—two nested tubes above the bit of a core drill, the outer rotating with the bit, the inner receiving and preserving a continuous section or core of the material penetrated. The following two types of inner barrels are commonly used.

3.1.5.1 split-tube barrel, n—a type of inner barrel consisting of two longitudinal halves of pipe bound together by reinforced tape at intervals along the barrel length that allows easy access to a relatively intact core (but cutting the tape). (This is the preferred barrel type for coal exploration, when available.)

3.1.5.2 solid-tube barrel, n—a type of inner barrel consisting of a single solid-walled length of pipe in which removal of the core is accomplished by mechanical or hydraulic pressure at one end of the pipe thus extruding the core onto a core tray. (The core is likely to be less intact than when a split-tube barrel is used.)

3.1.6 core sample, n—that part of a core of rock or coal obtained so as to accurately represent a thickness of a unit penetrating by drilling.

3.1.7 geophysical log, n—a graphic record of the measured or computed physical characteristics of the rock section encountered in a borehole, plotted as a continuous function of depth. Measurements are made by a sonde, which contains the detectors, as it is withdrawn from the borehole by a wire line. Several measurements are usually made simultaneously, and the resulting curves are displayed side by side on the common depth scale. A common suite of logs used in coal exploration include caliper, density (gamma-gamma), natural gamma, and resistivity.

3.1.7.1 caliper log, n—a continuous mechanical measurement of the diameter and thus the rugosity of the borehole. The tool identifies zones where swelling or cavings (washouts) have occurred during drilling. The tool's value is in allowing qualitative or quantitative corrections to be made to other geophysical logs which are affected by borehole size (especially density).

3.1.7.2 density log (gamma-gamma log), n—measures electron density within lithologic units which is related to their bulk density. The wireline tool records the intensity of...
gamma radiation (in counts per second) from a nuclear source within the tool after it has been attenuated and backscattered by lithologies within the borehole. Due to the distinctly low density of coals, the density log is essential in coal exploration for identifying coal seams and coal-seam partings. The bias/resolution of density logs can be affected by source-detector spacing (closer spacing increases resolution), borehole size and irregularities (see caves or washouts), and the presence of casing and logging speed.

3.1.7.3 natural gamma-ray log, n—a record of the natural radioactivity of the lithologies encountered in the borehole environment. During recording of geophysical logs, the amount of natural radiation is recorded and presented in either counts per second (CPS) or American Petroleum Institute (API) units. Unlike many other log types, a representative natural gamma log can be obtained where borehole or fluid conditions, or both, are not optimal or where casing is present. The natural gamma log is most often used in the coal environment for identifying clastic lithologies and differentiating coal seams and coal-seam partings.

3.1.7.4 resistivity log, n—a measure of the voltage differential of strata along the walls of a borehole when electrical current is passed through the strata. The resistivity log requires a fluid-filled hole to constantly provide a conductive medium between electrodes on the tool. The spacing between the electrodes determines the precision of the bed boundary relationships in much the same manner as with the density log. The resistivity log is useful primarily in conjunction with other log types. The logs are affected by casing, logging speed, electrode spacing, formation porosity, and resistivity changes in the borehole fluid.

3.1.8 floor, n—the rock material immediately underlying a coal bed.
3.1.9 roof, n—the rock material immediately overlying a coal bed.
3.1.10 sonda, n—an elongate cylindrical tool assembly used in a borehole to acquire a geophysical log.

4. Summary of Practice
4.1 At selected sites in a deposit of coal, a borehole is drilled and the core containing the coal and surrounding strata of rock is recovered.
4.2 The core coal is cleaned of drilling fluid, if necessary, properly described, and packaged so that loss of moisture is minimized. From this core, coal and roof and floor material of interest are collected for analysis and testing.

5. Significance and Use
5.1 Coal samples are collected from cores to be used for subsequent chemical, physical, and petrographic testing that is needed for commercial evaluations, for planning mining operations to maintain coal quality, for determining the apparent rank of the coal in accordance with Classification D 388, and for geologic and coal resource studies.

6. Apparatus
6.1 Steel Measuring Tape, not less than 10-m (30-ft) long.
6.2 Rock Hammer, Chisel, or Pick, with file for sharpening.
6.3 Water Source, to provide fresh, clean water for rinsing drilling mud from cut-surface of the core.
6.4 Waterproof Marking Pencils that are visible on coal, such as a yellow lumber crayon.
6.5 Polyethylene Bags, Tubing, or Sheets, 0.1 mm (4 mil) or thicker.
6.6 Core Tray, constructed of wood, plastic, or metal, onto which to extrude the core from the core barrel.
6.7 Boxes for Core Storage, constructed of wood, plastic, or coated cardboard or if the core is to remain stratigraphically oriented, use containers such as poly(vinyl chloride) (PVC) pipe.
6.8 Tags and Waterproof Marking Pens, for sample identification and for marking depths, orientation, etc., on the plastic sheeting.
6.9 Notebook and Pencil, or other means for record keeping.
6.10 Waterproof Container, to hold sample tag.
6.11 Geophysical Logging Unit (optional), consisting of recording equipment and sondes for high-resolution density and caliper logs and possibly gamma and resistivity logs.

7. Planning for Sampling
7.1 Obtain information such as geologic, topographic, and land ownership for locating suitable sites for drilling. Choose sites that will best satisfy the purpose of sampling.
7.2 A core approximately 47 mm (1.87 in.) in diameter yields a sufficient sample for most purposes. Minimum sample mass requirements for analytical tests, such as washability testing, may dictate a sample mass that can only be obtained from larger diameter cores or multiple separate cores.

NOTE 1—The diameter and length of the core (or number of separate cores) required to obtain a desired mass of sample may be estimated from the density of coal, approximately 1.3 to 1.35 g/cm³. The selected diameter of the core can have an effect on the representativeness of subsamples obtained from the core sample for various types of testing. As an example in washability testing, the diameter of the core should be at least three times the largest dimension of the top size of any subsamples to be obtained from the core sample. For information on determining the washability characteristics of coal, see Test Method D 4371 and the report by Wizzard.³


A larger diameter core can also be necessary to obtain a more representative sample if the quality of the coal varies greatly from layer to layer in the seam.

7.3 Increment Sampling—Where differences of coal quality parameters exist among different layers or benches in the same coal seam or where the seam is thick, it is best to sample and analyze the seam in vertical increments.

7.3.1 Compositing⁴—Data obtained from the separate analyses of the vertical core increments can be composited by calculation, preferably by sample mass if sufficient information such as core length and density has been measured for each increment. Alternatively, a composite sample of the entire seam can be produced by combining representative splits of the increments by increment thickness for the determination of whole core characteristics. The use of an ash/density relationship for the specific geographic

area and seam being studied can be helpful in validating direct density measurements. Extreme care and cross-checking should be exercised when combining a sample composite for analysis or when calculating a composite analysis from the analysis of increments. Some coal quality parameters are not additive in a linear fashion and cannot be accurately determined by calculated compositing. Fusion temperatures of ash and Hardgrove grindability and Gieseler fluidity indices are examples of physical properties that are nonadditive and best determined on whole samples.

7.4 Sampling Plans for Different Purposes:

7.4.1 Variations in the purpose of sampling and in conditions encountered in the field may preclude the establishment of rigid procedures covering every sampling situation. Therefore, formulate a plan taking into account the conditions of drilling, the purpose of the sampling, and the known characteristics of the coal seam. Characteristics include lateral or vertical variations in coal quality and occurrences of persistent mineral parting or concretions within a seam.

7.4.2 Sampling Plan for Classification According to Rank:

7.4.2.1 A minimum of three, but preferably five or more, whole-seam samples are required to characterize the apparent rank of the coal in a given area in accordance with Classification D 388.

7.4.2.2 All roof and floor rock, all mineral partings more than 10-mm (3/8-in.) thick, and mineralized lenses or concretions (such as sulfur balls) more than 13-mm (1/2-in.) thick and 50-mm (2-in.) wide shall be excluded from the sample. Angular or wedge-shaped mineral lenses or concretions that are not continuous shall be excluded from the samples if the volume exceeds that of a parting 10-mm thick. (Refer to Practice D 4596.)

8. Core Recovery

8.1 Recovery for Classification According to Rank and Some Other Purposes—The recovery of 100 % of the entire seam is not possible on every core under even the best of field conditions. However, useful information can many times be obtained from cores where less than 100 % of the seam has been recovered. When portions of the interval have been lost, the following information should be recorded: (1) the percent recovery and (2) the estimated location and thickness of the lost intervals. Use of data from cores that represent less than 100 % of the total seam thickness shall be identified as such and used with caution.

8.2 Determining Recovery From Comparison of Geophysical Logs and Core—The most reliable measurement of coal seam thickness can be obtained from deflections on the high-resolution density log and the caliper log. If the roof and floor lithologies are other than sandstone, the resistivity and natural gamma can also be used, especially if caves or washouts have caused material to be lost during coring. Generally, the midpoint (the point at one-half the deflection between the lithologic-density lines) on the log trace is used to determine bed boundaries. However, for certain geophysical tools it may be necessary to use other criteria, such as one-third deflection, initial deflection, etc. Geophysical tool manufacturers or service companies have specific instructions for the calibration and interpretation of their logs and should be consulted by the user.

8.3 Regardless of the method used to determine thickness, check the estimated thickness from the geophysical log(s) against measured coal-core sections for final determination. This is particularly critical in cases of gradational contacts or thin, dense partings for which thicknesses are commonly overexaggerated by the response of the geophysical tool. Generally, thicknesses can be determined from geophysical tools within ±30 mm (0.1 ft) or less depending on the type of tool used.

9. Sampling Procedures

9.1 Handle the section of coal core carefully as it is extracted from the borehole. Additional breakage should be prevented.

9.2 Transfer the core onto a core tray that has been constructed to receive the length and diameter of the core being drilled.

9.2.1 Split-Tube Core Barrels—Place the tube in the tray, remove one section of the tube, and roll the core into the tray.

9.2.2 Solid-Tube Core Barrels—Place the tube at a slight angle above the tray with one end in the tray, pull the tube lengthwise down the tray and push the core at the opposite end, thereby extruding the core onto the tray while at the same time moving the tube along the length of the tray. Match any broken contacts so that the lengths of the core can be measured.

9.3 Measure the lengths of the core for various lithologies and record the values.

Note 2—In steeply dipping coal seams, the measured coal-seam thickness can exceed the true seam thickness. In addition, improper arrangement of broken pieces of the core can also contribute to inaccuracies in determination of the true thickness of the seam.

9.3.1 Splitting the Core Lengthwise by Sawing—If necessary, the core can be sawn in the field or laboratory into approximately equal sections of intact core. This should be performed by keeping the core in the PVC pipe or by using a similar support to keep the core intact while sawing.

9.4 Remove all drill mud or cuttings from the core using clean water.

9.5 Core Description—Describe and record observations on the character of the coal seam (refer to Definitions D 2796) to the extent of the sampling plan as follows:

9.5.1 The type of coal throughout the length of the coal core. Note any banding, if present. If the coal is bituminous, describe the type of lithologies (vitrain, clarain, durain, fusain, nonbanded, and impure coal) that are present.

9.5.2 The type and distribution of mineral matter, if present, throughout the length of the coal core.

9.5.3 The nature of any fractures or joints in the coal, including any mineralization of cleat.

9.5.4 Drilling marks or erosion of the core.

9.5.5 The lithology of contacts with other rock layers, noting especially those characteristics (such as fossils, burrows, or bedding) that suggest marine or nonmarine condition of their environment during deposition.

9.5.6 The location of the drill site, the surface elevation of the borehole, the depth measurements of the coal seam contacts with other lithologies, and the intervals of coal sampled, using a unique number or series of numbers that identifies any samples that will be analyzed.

9.6 Field Preparation and Packaging of Samples—Pre-
pare the core sample according to the purpose of sampling. Bulk sampling is utilized for samples that do not require orientation. For other purposes when vertical orientation is critical, special handling procedures must be followed.

9.6.1 Bulk Sample to Determine Apparent Rank Only—For ranking, all mineral layers are excluded according to 7.4.2.2. The excluded layers should be sampled and analyzed separately for resource assessments. If sampling for other purposes, mineral layers should not be excluded so as to approximate coal as mined.

9.6.1.1 Identify and separate all mineral layers or other parts of the seam that are to be excluded from the bulk sample according to the procedure specified in section 7.4.2.2 when sampling.

9.6.1.2 With a rock hammer or chisel, cut out for exclusion all marked material not to be included in the bulk sample.

9.6.1.3 Place all remaining coal core in a plastic bag. Label the outside of the bag with a permanent waterproof marking pen. Seal the bag and attach a properly labelled, waterproof tab. Package in like manner any excluded layers (materials) to be analyzed separately from the coal sample.

9.6.2 Cores for the Characterization of Strata Within the Seam—Place the intact core into a split PVC tube or a core box that is lined with polyethylene sheeting. Label top, bottom, parting occurrences, elevations, and drilling depth on the inside of the PVC tube half or core-box lid.

9.6.2.1 For split PVC pipe, place half of the pipe onto the coal core, break the core to the same length as the pipe, roll the core section and PVC pipe over and place the second half of the pipe onto the core. Using fiber reinforced tape, tape the halves of the PVC pipe together so they will not separate, mark the top of the core section on the PVC pipe, either slip the pipe into a polyethylene tube or wrap it in a polyethylene sheet, securely seal the ends of the plastic, and tie a prepared label in a waterproof container to one end of the section. Double-bag the section in plastic and transport.

9.6.2.2 For a core box, break the core into lengths, each of which will fit into one row in the box. Alternatively, wooden boxes can be constructed to match the thickness of the bed. Wrap the core in a polyethylene sheet (0.1-mm minimum thickness), securely double-seal the ends of the core with a twist wire or tape, and properly indicate the direction of the top of the core on the side of the plastic sheet with a waterproof marking pen. Tie a label in a waterproof sleeve to one end of the core to identify the sample, place the core length into the box, and label and seal the box for transporting. For soft or friable coal, it is advisable to extrude the core directly into the core tray as specified in 9.2.

9.6.3 Bulk Samples for Other Testing—For samples in which stratigraphic orientation is not necessary and only a bulk sample of all the coal and partings that comprise the bed is required, separate the coal from the roof and floor material, place the coal into polyethylene bags (0.1-mm minimum thickness), seal the bag, such as with a wire tie, attach a labeled tag to the bag, double-bag the sample, and prepare it for transport.

9.7 Moisture determined directly from a core sample shall be considered questionable in any core sample because of possible contamination from drilling fluids and groundwater. If a more representative estimate of the inherent moisture content of the core sample (with the exception of certain low-rank coals) is desired, the sample should be analyzed according to Test Method D 1412.

10. Preparation of Samples for Analyses

10.1 Samples for Washability—Prepare samples in accordance with Test Method D 4371.

10.2 Samples for Testing for Quality—Prepare samples in accordance with Method D 2013.

11. Keywords

11.1 borehole samples; coal; coal rank; core; core samples; floor; roof